扩散过程分数数学模型的解

IF 0.3 Q3 MATHEMATICS
Süleyman Çetinkaya, M. Bayrak, A. Demir, D. Baleanu
{"title":"扩散过程分数数学模型的解","authors":"Süleyman Çetinkaya, M. Bayrak, A. Demir, D. Baleanu","doi":"10.22190/fumi210218010c","DOIUrl":null,"url":null,"abstract":"In this research we present two new approaches with Laplace transformation to form the truncated solution of space-time fractional differential equations (STFDE) with mixed boundary conditions. Since order of the fractional derivative of time derivative is taken between zero and one we have a sub-diffusive differential equation. First, we reduce STFDE into either a time or a space fractional differential equation which are easier to deal with. At the second step the Laplace transformation is applied to the reduced problem to obtain truncated solution. At the final step using the inverse transformations, we get the truncated solution of the problem we consider it. Presented examples illustrate the applicability and power of the approaches, used in this study.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOLUTIONS FOR THE FRACTIONAL MATHEMATICAL MODELS OF DIFFUSION PROCESS\",\"authors\":\"Süleyman Çetinkaya, M. Bayrak, A. Demir, D. Baleanu\",\"doi\":\"10.22190/fumi210218010c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research we present two new approaches with Laplace transformation to form the truncated solution of space-time fractional differential equations (STFDE) with mixed boundary conditions. Since order of the fractional derivative of time derivative is taken between zero and one we have a sub-diffusive differential equation. First, we reduce STFDE into either a time or a space fractional differential equation which are easier to deal with. At the second step the Laplace transformation is applied to the reduced problem to obtain truncated solution. At the final step using the inverse transformations, we get the truncated solution of the problem we consider it. Presented examples illustrate the applicability and power of the approaches, used in this study.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi210218010c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi210218010c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种利用拉普拉斯变换形成具有混合边界条件的时空分数阶微分方程截断解的新方法。由于时间导数的分数阶导数的阶数在0和1之间我们得到了一个次扩散微分方程。首先,我们将STFDE简化为更容易处理的时间或空间分数阶微分方程。第二步,将拉普拉斯变换应用于简化后的问题,得到截断解。在最后一步使用逆变换,我们得到我们所考虑的问题的截断解。给出的例子说明了本研究中使用的方法的适用性和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLUTIONS FOR THE FRACTIONAL MATHEMATICAL MODELS OF DIFFUSION PROCESS
In this research we present two new approaches with Laplace transformation to form the truncated solution of space-time fractional differential equations (STFDE) with mixed boundary conditions. Since order of the fractional derivative of time derivative is taken between zero and one we have a sub-diffusive differential equation. First, we reduce STFDE into either a time or a space fractional differential equation which are easier to deal with. At the second step the Laplace transformation is applied to the reduced problem to obtain truncated solution. At the final step using the inverse transformations, we get the truncated solution of the problem we consider it. Presented examples illustrate the applicability and power of the approaches, used in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信