线性算法的简单插值

Christoph Scholl, Florian Pigorsch, Stefan Disch, Ernst Althaus
{"title":"线性算法的简单插值","authors":"Christoph Scholl, Florian Pigorsch, Stefan Disch, Ernst Althaus","doi":"10.7873/DATE.2014.128","DOIUrl":null,"url":null,"abstract":"Craig interpolation has turned out to be an essential method for many applications in formal verification. In this paper we focus on the computation of simple interpolants for the theory of linear arithmetic with rational coefficients. We successfully minimize the number of linear constraints in the final interpolant by several methods including proof transformations, linear programming, and SMT solving. Experimental results comparing the approach to standard methods from the literature prove the effectiveness of the approach and show reductions of up to 70% in the number of linear constraints.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"54 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Simple interpolants for linear arithmetic\",\"authors\":\"Christoph Scholl, Florian Pigorsch, Stefan Disch, Ernst Althaus\",\"doi\":\"10.7873/DATE.2014.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Craig interpolation has turned out to be an essential method for many applications in formal verification. In this paper we focus on the computation of simple interpolants for the theory of linear arithmetic with rational coefficients. We successfully minimize the number of linear constraints in the final interpolant by several methods including proof transformations, linear programming, and SMT solving. Experimental results comparing the approach to standard methods from the literature prove the effectiveness of the approach and show reductions of up to 70% in the number of linear constraints.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"54 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

克雷格插值已被证明是许多形式验证应用中必不可少的方法。本文主要讨论了有理系数线性算术理论中简单插值的计算。通过证明变换、线性规划和SMT求解等方法,我们成功地最小化了最终插值中线性约束的数量。将该方法与文献中的标准方法进行比较的实验结果证明了该方法的有效性,并且显示线性约束的数量减少了高达70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple interpolants for linear arithmetic
Craig interpolation has turned out to be an essential method for many applications in formal verification. In this paper we focus on the computation of simple interpolants for the theory of linear arithmetic with rational coefficients. We successfully minimize the number of linear constraints in the final interpolant by several methods including proof transformations, linear programming, and SMT solving. Experimental results comparing the approach to standard methods from the literature prove the effectiveness of the approach and show reductions of up to 70% in the number of linear constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信