基于33-GHz直接采样的时域人工智能手势识别雷达

Jungwoon Park, Junyoung Jang, Geunhaeng Lee, Hyunmin Koh, Changhwan Kim, Tae Wook Kim
{"title":"基于33-GHz直接采样的时域人工智能手势识别雷达","authors":"Jungwoon Park, Junyoung Jang, Geunhaeng Lee, Hyunmin Koh, Changhwan Kim, Tae Wook Kim","doi":"10.23919/VLSIC.2019.8777995","DOIUrl":null,"url":null,"abstract":"This research developed time domain Artificial Intelligence radar using up to 33 GS/s direct sampling technique. It can recognize both static and dynamic hand gesture by learning the unique impulse signal that comes back from target. The algorithm gets recognition rate 93.2% and 90.5%, respectively on set of static and dynamic gesture.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"48 1","pages":"C24-C25"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Time Domain Artificial Intelligence Radar for Hand Gesture Recognition Using 33-GHz Direct Sampling\",\"authors\":\"Jungwoon Park, Junyoung Jang, Geunhaeng Lee, Hyunmin Koh, Changhwan Kim, Tae Wook Kim\",\"doi\":\"10.23919/VLSIC.2019.8777995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research developed time domain Artificial Intelligence radar using up to 33 GS/s direct sampling technique. It can recognize both static and dynamic hand gesture by learning the unique impulse signal that comes back from target. The algorithm gets recognition rate 93.2% and 90.5%, respectively on set of static and dynamic gesture.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"48 1\",\"pages\":\"C24-C25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8777995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8777995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究开发了采用高达33gs /s直接采样技术的时域人工智能雷达。它通过学习目标反馈的唯一脉冲信号,实现对静态和动态手势的识别。该算法在静态和动态手势集上的识别率分别为93.2%和90.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Time Domain Artificial Intelligence Radar for Hand Gesture Recognition Using 33-GHz Direct Sampling
This research developed time domain Artificial Intelligence radar using up to 33 GS/s direct sampling technique. It can recognize both static and dynamic hand gesture by learning the unique impulse signal that comes back from target. The algorithm gets recognition rate 93.2% and 90.5%, respectively on set of static and dynamic gesture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信