Jungwoon Park, Junyoung Jang, Geunhaeng Lee, Hyunmin Koh, Changhwan Kim, Tae Wook Kim
{"title":"基于33-GHz直接采样的时域人工智能手势识别雷达","authors":"Jungwoon Park, Junyoung Jang, Geunhaeng Lee, Hyunmin Koh, Changhwan Kim, Tae Wook Kim","doi":"10.23919/VLSIC.2019.8777995","DOIUrl":null,"url":null,"abstract":"This research developed time domain Artificial Intelligence radar using up to 33 GS/s direct sampling technique. It can recognize both static and dynamic hand gesture by learning the unique impulse signal that comes back from target. The algorithm gets recognition rate 93.2% and 90.5%, respectively on set of static and dynamic gesture.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"48 1","pages":"C24-C25"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Time Domain Artificial Intelligence Radar for Hand Gesture Recognition Using 33-GHz Direct Sampling\",\"authors\":\"Jungwoon Park, Junyoung Jang, Geunhaeng Lee, Hyunmin Koh, Changhwan Kim, Tae Wook Kim\",\"doi\":\"10.23919/VLSIC.2019.8777995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research developed time domain Artificial Intelligence radar using up to 33 GS/s direct sampling technique. It can recognize both static and dynamic hand gesture by learning the unique impulse signal that comes back from target. The algorithm gets recognition rate 93.2% and 90.5%, respectively on set of static and dynamic gesture.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"48 1\",\"pages\":\"C24-C25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8777995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8777995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Time Domain Artificial Intelligence Radar for Hand Gesture Recognition Using 33-GHz Direct Sampling
This research developed time domain Artificial Intelligence radar using up to 33 GS/s direct sampling technique. It can recognize both static and dynamic hand gesture by learning the unique impulse signal that comes back from target. The algorithm gets recognition rate 93.2% and 90.5%, respectively on set of static and dynamic gesture.