两阶段运输问题及其两种修正

IF 0.1
P. Stetsyuk, V. Stovba, O. Khomiak
{"title":"两阶段运输问题及其两种修正","authors":"P. Stetsyuk, V. Stovba, O. Khomiak","doi":"10.17721/2706-9699.2022.1.07","DOIUrl":null,"url":null,"abstract":"In this paper, a mathematical model of an open twostage transportation problem and its two modifications are considered. The first modification takes into account the upper bounds of transitional points capacities, the second takes into account the possibility of selection of the fixed number of transitional points, which is less than their total number. For all three cases the necessary and sufficient conditions of constraints feasibility are substantiated. The results of the computational experiments using gurobi and cplex solvers are presented.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"284 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TWO-STAGE TRANSPORTATION PROBLEM AND ITS TWO MODIFICATIONS\",\"authors\":\"P. Stetsyuk, V. Stovba, O. Khomiak\",\"doi\":\"10.17721/2706-9699.2022.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a mathematical model of an open twostage transportation problem and its two modifications are considered. The first modification takes into account the upper bounds of transitional points capacities, the second takes into account the possibility of selection of the fixed number of transitional points, which is less than their total number. For all three cases the necessary and sufficient conditions of constraints feasibility are substantiated. The results of the computational experiments using gurobi and cplex solvers are presented.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"284 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2022.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了一类开放两段运输问题的数学模型及其两种修正。第一次修正考虑了过渡点容量的上界,第二次修正考虑了选择固定数量的过渡点的可能性,该数量小于过渡点的总数。对于这三种情况,约束可行性的充分必要条件都得到了证实。给出了用gurobi和complex求解器进行的计算实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TWO-STAGE TRANSPORTATION PROBLEM AND ITS TWO MODIFICATIONS
In this paper, a mathematical model of an open twostage transportation problem and its two modifications are considered. The first modification takes into account the upper bounds of transitional points capacities, the second takes into account the possibility of selection of the fixed number of transitional points, which is less than their total number. For all three cases the necessary and sufficient conditions of constraints feasibility are substantiated. The results of the computational experiments using gurobi and cplex solvers are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信