加速柔性生物制造工艺开发的随机模拟不确定性分析

Wei Xie, R. Barton, Barry L. Nelson, Keqi Wang
{"title":"加速柔性生物制造工艺开发的随机模拟不确定性分析","authors":"Wei Xie, R. Barton, Barry L. Nelson, Keqi Wang","doi":"10.48550/arXiv.2203.08980","DOIUrl":null,"url":null,"abstract":"Motivated by critical challenges and needs from biopharmaceuticals manufacturing, we propose a general metamodel-assisted stochastic simulation uncertainty analysis framework to accelerate the development of a simulation model with modular design for flexible production processes. There are often very limited process observations. Thus, there exist both simulation and model uncertainties in the system performance estimates. In biopharmaceutical manufacturing, model uncertainty often dominates. The proposed framework can produce a confidence interval that accounts for simulation and model uncertainties by using a metamodel-assisted bootstrapping approach. Furthermore, a variance decomposition is utilized to estimate the relative contributions from each source of model uncertainty, as well as simulation uncertainty. This information can be used to improve the system mean performance estimation. Asymptotic analysis provides theoretical support for our approach, while the empirical study demonstrates that it has good finite-sample performance.","PeriodicalId":11868,"journal":{"name":"Eur. J. Oper. Res.","volume":"52 1","pages":"238-248"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Simulation Uncertainty Analysis to Accelerate Flexible Biomanufacturing Process Development\",\"authors\":\"Wei Xie, R. Barton, Barry L. Nelson, Keqi Wang\",\"doi\":\"10.48550/arXiv.2203.08980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by critical challenges and needs from biopharmaceuticals manufacturing, we propose a general metamodel-assisted stochastic simulation uncertainty analysis framework to accelerate the development of a simulation model with modular design for flexible production processes. There are often very limited process observations. Thus, there exist both simulation and model uncertainties in the system performance estimates. In biopharmaceutical manufacturing, model uncertainty often dominates. The proposed framework can produce a confidence interval that accounts for simulation and model uncertainties by using a metamodel-assisted bootstrapping approach. Furthermore, a variance decomposition is utilized to estimate the relative contributions from each source of model uncertainty, as well as simulation uncertainty. This information can be used to improve the system mean performance estimation. Asymptotic analysis provides theoretical support for our approach, while the empirical study demonstrates that it has good finite-sample performance.\",\"PeriodicalId\":11868,\"journal\":{\"name\":\"Eur. J. Oper. Res.\",\"volume\":\"52 1\",\"pages\":\"238-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.08980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.08980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于生物制药制造的关键挑战和需求,我们提出了一个通用元模型辅助的随机仿真不确定性分析框架,以加速具有模块化设计的柔性生产过程仿真模型的开发。通常有非常有限的过程观察。因此,在系统性能估计中既存在仿真不确定性,也存在模型不确定性。在生物制药生产中,模型不确定性往往占主导地位。所提出的框架可以通过使用元模型辅助自举方法产生考虑模拟和模型不确定性的置信区间。此外,利用方差分解来估计模型不确定性和模拟不确定性的各个来源的相对贡献。该信息可用于改进系统平均性能估计。渐近分析为我们的方法提供了理论支持,而实证研究表明,它具有良好的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Simulation Uncertainty Analysis to Accelerate Flexible Biomanufacturing Process Development
Motivated by critical challenges and needs from biopharmaceuticals manufacturing, we propose a general metamodel-assisted stochastic simulation uncertainty analysis framework to accelerate the development of a simulation model with modular design for flexible production processes. There are often very limited process observations. Thus, there exist both simulation and model uncertainties in the system performance estimates. In biopharmaceutical manufacturing, model uncertainty often dominates. The proposed framework can produce a confidence interval that accounts for simulation and model uncertainties by using a metamodel-assisted bootstrapping approach. Furthermore, a variance decomposition is utilized to estimate the relative contributions from each source of model uncertainty, as well as simulation uncertainty. This information can be used to improve the system mean performance estimation. Asymptotic analysis provides theoretical support for our approach, while the empirical study demonstrates that it has good finite-sample performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信