Ehsan Fatourehchi, M. Mohammadpour, P. King, H. Rahnejat, G. Trimmer, B. Womersley, A. Williams
{"title":"微几何齿形修形对行星轮毂齿轮效率的影响","authors":"Ehsan Fatourehchi, M. Mohammadpour, P. King, H. Rahnejat, G. Trimmer, B. Womersley, A. Williams","doi":"10.1504/IJPT.2018.10011451","DOIUrl":null,"url":null,"abstract":"Planetary hub systems offer desired speed and torque variation with a lighter, compact and coaxial construction than the traditional gear trains. Generated friction between the mating teeth flanks of vehicular planetary hubs under varying load-speed conditions is one of the main sources of power loss. Modification of gear tooth geometry as well as controlling the contacting surface topography is the remedial action. The paper studies the effect of tooth crowning and tip relief upon system efficiency. It includes an analytical elastohydrodynamic analysis of elliptical point contact of crowned spur gear teeth. The analysis also includes the effect of direct contact of asperities on the opposing meshing surfaces. Tooth contact analysis (TCA) is used to obtain the contact footprint shape as well as contact kinematics and load distribution. A parametric study is carried out to observe the effect of gear teeth crowning and tip relief with different levels of surface finish upon the planetary hubs' power loss.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":"43 1","pages":"162"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Microgeometrical tooth profile modification influencing efficiency of planetary hub gears\",\"authors\":\"Ehsan Fatourehchi, M. Mohammadpour, P. King, H. Rahnejat, G. Trimmer, B. Womersley, A. Williams\",\"doi\":\"10.1504/IJPT.2018.10011451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planetary hub systems offer desired speed and torque variation with a lighter, compact and coaxial construction than the traditional gear trains. Generated friction between the mating teeth flanks of vehicular planetary hubs under varying load-speed conditions is one of the main sources of power loss. Modification of gear tooth geometry as well as controlling the contacting surface topography is the remedial action. The paper studies the effect of tooth crowning and tip relief upon system efficiency. It includes an analytical elastohydrodynamic analysis of elliptical point contact of crowned spur gear teeth. The analysis also includes the effect of direct contact of asperities on the opposing meshing surfaces. Tooth contact analysis (TCA) is used to obtain the contact footprint shape as well as contact kinematics and load distribution. A parametric study is carried out to observe the effect of gear teeth crowning and tip relief with different levels of surface finish upon the planetary hubs' power loss.\",\"PeriodicalId\":37550,\"journal\":{\"name\":\"International Journal of Powertrains\",\"volume\":\"43 1\",\"pages\":\"162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Powertrains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJPT.2018.10011451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPT.2018.10011451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Microgeometrical tooth profile modification influencing efficiency of planetary hub gears
Planetary hub systems offer desired speed and torque variation with a lighter, compact and coaxial construction than the traditional gear trains. Generated friction between the mating teeth flanks of vehicular planetary hubs under varying load-speed conditions is one of the main sources of power loss. Modification of gear tooth geometry as well as controlling the contacting surface topography is the remedial action. The paper studies the effect of tooth crowning and tip relief upon system efficiency. It includes an analytical elastohydrodynamic analysis of elliptical point contact of crowned spur gear teeth. The analysis also includes the effect of direct contact of asperities on the opposing meshing surfaces. Tooth contact analysis (TCA) is used to obtain the contact footprint shape as well as contact kinematics and load distribution. A parametric study is carried out to observe the effect of gear teeth crowning and tip relief with different levels of surface finish upon the planetary hubs' power loss.
期刊介绍:
IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.