R. Agrawal, Sreenivas Gollapudi, A. Kannan, K. Kenthapadi
{"title":"改进教科书的数据挖掘","authors":"R. Agrawal, Sreenivas Gollapudi, A. Kannan, K. Kenthapadi","doi":"10.1145/2207243.2207246","DOIUrl":null,"url":null,"abstract":"We present our early explorations into developing a data mining based approach for enhancing the quality of textbooks. We describe a diagnostic tool to algorithmically identify deficient sections in textbooks. We also discuss techniques for algorithmically augmenting textbook sections with links to selective content mined from the Web. Our evaluation, employing widely-used textbooks from India, indicates that developing technological approaches to help improve textbooks holds promise.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"21 1","pages":"7-19"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Data mining for improving textbooks\",\"authors\":\"R. Agrawal, Sreenivas Gollapudi, A. Kannan, K. Kenthapadi\",\"doi\":\"10.1145/2207243.2207246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our early explorations into developing a data mining based approach for enhancing the quality of textbooks. We describe a diagnostic tool to algorithmically identify deficient sections in textbooks. We also discuss techniques for algorithmically augmenting textbook sections with links to selective content mined from the Web. Our evaluation, employing widely-used textbooks from India, indicates that developing technological approaches to help improve textbooks holds promise.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"21 1\",\"pages\":\"7-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2207243.2207246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2207243.2207246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present our early explorations into developing a data mining based approach for enhancing the quality of textbooks. We describe a diagnostic tool to algorithmically identify deficient sections in textbooks. We also discuss techniques for algorithmically augmenting textbook sections with links to selective content mined from the Web. Our evaluation, employing widely-used textbooks from India, indicates that developing technological approaches to help improve textbooks holds promise.