一类非平稳自由边界问题解的存在性

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Bousselsal, A. Lyaghfouri, E. Zaouche
{"title":"一类非平稳自由边界问题解的存在性","authors":"M. Bousselsal, A. Lyaghfouri, E. Zaouche","doi":"10.3336/GM.53.2.13","DOIUrl":null,"url":null,"abstract":"We consider a class of parabolic free boundary problems with heterogeneous coefficients including, from a physical point of view, the evolutionary dam problem. We establish existence of a solution for this problem. We use a regularized problem for which we prove existence of a solution by applying the Tychonoff fixed point theorem. Then we pass to the limit to get a solution of our problem. We also give a regularity result of the solutions.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the existence of a solution of a class of non-stationary free boundary problems\",\"authors\":\"M. Bousselsal, A. Lyaghfouri, E. Zaouche\",\"doi\":\"10.3336/GM.53.2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of parabolic free boundary problems with heterogeneous coefficients including, from a physical point of view, the evolutionary dam problem. We establish existence of a solution for this problem. We use a regularized problem for which we prove existence of a solution by applying the Tychonoff fixed point theorem. Then we pass to the limit to get a solution of our problem. We also give a regularity result of the solutions.\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/GM.53.2.13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/GM.53.2.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

从物理角度考虑一类具有非均质系数的抛物自由边界问题,包括演化坝问题。我们建立了这个问题的解的存在性。利用一个正则化问题,利用Tychonoff不动点定理证明了该问题解的存在性。然后求极限得到问题的解。并给出了解的正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of a solution of a class of non-stationary free boundary problems
We consider a class of parabolic free boundary problems with heterogeneous coefficients including, from a physical point of view, the evolutionary dam problem. We establish existence of a solution for this problem. We use a regularized problem for which we prove existence of a solution by applying the Tychonoff fixed point theorem. Then we pass to the limit to get a solution of our problem. We also give a regularity result of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glasnik Matematicki
Glasnik Matematicki MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.80
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信