考虑多个风电场的概率总传输能力快速评估

Xiaochen Zhang, James Jamal Thomas, S. Grijalva
{"title":"考虑多个风电场的概率总传输能力快速评估","authors":"Xiaochen Zhang, James Jamal Thomas, S. Grijalva","doi":"10.1109/TDC.2016.7520074","DOIUrl":null,"url":null,"abstract":"Before the rapid growth of wind power, most bulk power system uncertainties came from system contingencies and load fluctuation. However, when large numbers of wind farms are introduced, the stochastic nature of the wind farm output under system normal state calls for a new probabilistic framework for system operation and evaluation, which captures the uncertainty of wind and corresponding transfer constraints of the system. Total transfer capability (TTC) is a measurement of the system's maximum power transfer capacity from a set of source buses to a set of sink buses. In this paper, we propose a fast probabilistic TTC evaluation method that incorporates the less predictable nature of wind farms. The proposed method returns the probabilistic TTC as a random variable that follows a certain distribution derived from wind farm output distributions using power transfer distribution factors. Our proposed method solves the probabilistic TTC in an analytic way. Results from the IEEE 118-bus test case demonstrate the efficiency and accuracy of the proposed method.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"21 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast evaluation of probabilistic total transfer capability considering multiple wind farms\",\"authors\":\"Xiaochen Zhang, James Jamal Thomas, S. Grijalva\",\"doi\":\"10.1109/TDC.2016.7520074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Before the rapid growth of wind power, most bulk power system uncertainties came from system contingencies and load fluctuation. However, when large numbers of wind farms are introduced, the stochastic nature of the wind farm output under system normal state calls for a new probabilistic framework for system operation and evaluation, which captures the uncertainty of wind and corresponding transfer constraints of the system. Total transfer capability (TTC) is a measurement of the system's maximum power transfer capacity from a set of source buses to a set of sink buses. In this paper, we propose a fast probabilistic TTC evaluation method that incorporates the less predictable nature of wind farms. The proposed method returns the probabilistic TTC as a random variable that follows a certain distribution derived from wind farm output distributions using power transfer distribution factors. Our proposed method solves the probabilistic TTC in an analytic way. Results from the IEEE 118-bus test case demonstrate the efficiency and accuracy of the proposed method.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"21 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7520074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7520074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在风电快速增长之前,大容量电力系统的不确定性主要来自系统突发事件和负荷波动。然而,当引入大量风电场时,由于系统正常状态下风电场输出的随机性,需要一种新的系统运行和评估的概率框架,以捕获风的不确定性和相应的系统转移约束。总传输能力(TTC)是系统从一组源总线到一组汇聚总线的最大功率传输能力的度量。在本文中,我们提出了一种快速概率TTC评估方法,该方法结合了风电场的不可预测性。所提出的方法将概率TTC作为随机变量返回,该随机变量遵循使用电力传输分布因子从风电场输出分布中导出的一定分布。本文提出的方法以解析的方式解决了概率TTC问题。IEEE 118总线测试用例验证了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast evaluation of probabilistic total transfer capability considering multiple wind farms
Before the rapid growth of wind power, most bulk power system uncertainties came from system contingencies and load fluctuation. However, when large numbers of wind farms are introduced, the stochastic nature of the wind farm output under system normal state calls for a new probabilistic framework for system operation and evaluation, which captures the uncertainty of wind and corresponding transfer constraints of the system. Total transfer capability (TTC) is a measurement of the system's maximum power transfer capacity from a set of source buses to a set of sink buses. In this paper, we propose a fast probabilistic TTC evaluation method that incorporates the less predictable nature of wind farms. The proposed method returns the probabilistic TTC as a random variable that follows a certain distribution derived from wind farm output distributions using power transfer distribution factors. Our proposed method solves the probabilistic TTC in an analytic way. Results from the IEEE 118-bus test case demonstrate the efficiency and accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信