{"title":"静水盆地波浪型流的形成条件","authors":"N. Eroğlu, K. Taştan","doi":"10.1680/jwama.22.00077","DOIUrl":null,"url":null,"abstract":"In this study, formation conditions of maximum and minimum wave-type jumps are experimentally investigated. A total of 110 wave-type jump experiments are carried out. Experiments are conducted for several discharges, supercritical upstream and subcritical downstream water depths, and drop heights. According to the experimental results, the effective parameters on wave-type jumps are the upstream Froude number and the relative drop height. As the classical hydraulic jump equation is not sufficient to define conjugate depths of wave-type flow, empirical equations are presented for defining conjugate depths for both maximum and minimum wave- type jumps for which no sufficient experimental data is present in the available literature, and the agreement between the calculated and measured conjugate depths is found to be good. It is revealed that the value of the lower limit for the upstream Froude number is not constant for the formation of the maximum wave jump, and it depends on the relative drop height. Furthermore, experimental results of this study showed that energy dissipation ratios of maximum and minimum wave-type jumps are equal or larger than those of the classical hydraulic jumps. For this reason, wave-type jumps may be preferred at stilling basins with drops along with A-jumps.","PeriodicalId":54569,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Water Management","volume":"77 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation conditions of wave-type flows at stilling basins with a drop\",\"authors\":\"N. Eroğlu, K. Taştan\",\"doi\":\"10.1680/jwama.22.00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, formation conditions of maximum and minimum wave-type jumps are experimentally investigated. A total of 110 wave-type jump experiments are carried out. Experiments are conducted for several discharges, supercritical upstream and subcritical downstream water depths, and drop heights. According to the experimental results, the effective parameters on wave-type jumps are the upstream Froude number and the relative drop height. As the classical hydraulic jump equation is not sufficient to define conjugate depths of wave-type flow, empirical equations are presented for defining conjugate depths for both maximum and minimum wave- type jumps for which no sufficient experimental data is present in the available literature, and the agreement between the calculated and measured conjugate depths is found to be good. It is revealed that the value of the lower limit for the upstream Froude number is not constant for the formation of the maximum wave jump, and it depends on the relative drop height. Furthermore, experimental results of this study showed that energy dissipation ratios of maximum and minimum wave-type jumps are equal or larger than those of the classical hydraulic jumps. For this reason, wave-type jumps may be preferred at stilling basins with drops along with A-jumps.\",\"PeriodicalId\":54569,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.22.00077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Water Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jwama.22.00077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Formation conditions of wave-type flows at stilling basins with a drop
In this study, formation conditions of maximum and minimum wave-type jumps are experimentally investigated. A total of 110 wave-type jump experiments are carried out. Experiments are conducted for several discharges, supercritical upstream and subcritical downstream water depths, and drop heights. According to the experimental results, the effective parameters on wave-type jumps are the upstream Froude number and the relative drop height. As the classical hydraulic jump equation is not sufficient to define conjugate depths of wave-type flow, empirical equations are presented for defining conjugate depths for both maximum and minimum wave- type jumps for which no sufficient experimental data is present in the available literature, and the agreement between the calculated and measured conjugate depths is found to be good. It is revealed that the value of the lower limit for the upstream Froude number is not constant for the formation of the maximum wave jump, and it depends on the relative drop height. Furthermore, experimental results of this study showed that energy dissipation ratios of maximum and minimum wave-type jumps are equal or larger than those of the classical hydraulic jumps. For this reason, wave-type jumps may be preferred at stilling basins with drops along with A-jumps.
期刊介绍:
Water Management publishes papers on all aspects of water treatment, water supply, river, wetland and catchment management, inland waterways and urban regeneration.
Topics covered: applied fluid dynamics and water (including supply, treatment and sewerage) and river engineering; together with the increasingly important fields of wetland and catchment management, groundwater and contaminated land, waterfront development and urban regeneration. The scope also covers hydroinformatics tools, risk and uncertainty methods, as well as environmental, social and economic issues relating to sustainable development.