Gabidulin码的秩距和排列群的等距

T. Berger
{"title":"Gabidulin码的秩距和排列群的等距","authors":"T. Berger","doi":"10.1109/TIT.2003.819322","DOIUrl":null,"url":null,"abstract":"The rank distance was introduced by E.M. Gabidulin (see Probl. Pered. Inform., vol.21, p.1-12, 1985). He determined an upper bound for the minimum rank distance of a code. Moreover, he constructed a class of codes which meet this bound: the so-called Gabidulin codes. We first characterize the linear and semilinear isometries for the rank distance. Then we determine the isometry group and the permutation group of Gabidulin codes of any length. We give a characterization of equivalent Gabidulin codes. Finally, we prove that the number of equivalence classes of Gabidulin codes is exactly the number of equivalence classes of vector spaces of dimension n contained in GF(p/sup m/) under some particular relations.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"77 1","pages":"3016-3019"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Isometries for rank distance and permutation group of Gabidulin codes\",\"authors\":\"T. Berger\",\"doi\":\"10.1109/TIT.2003.819322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rank distance was introduced by E.M. Gabidulin (see Probl. Pered. Inform., vol.21, p.1-12, 1985). He determined an upper bound for the minimum rank distance of a code. Moreover, he constructed a class of codes which meet this bound: the so-called Gabidulin codes. We first characterize the linear and semilinear isometries for the rank distance. Then we determine the isometry group and the permutation group of Gabidulin codes of any length. We give a characterization of equivalent Gabidulin codes. Finally, we prove that the number of equivalence classes of Gabidulin codes is exactly the number of equivalence classes of vector spaces of dimension n contained in GF(p/sup m/) under some particular relations.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"77 1\",\"pages\":\"3016-3019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.819322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.819322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

排序距离是由E.M. Gabidulin引入的(见Probl。每。通知。,第21卷,第1-12页,1985年)。他确定了一个码的最小秩距的上界。此外,他还构造了一类符合这个界限的码:所谓的加比度林码。我们首先描述秩距的线性和半线性等距。然后确定任意长度加比都林编码的等距群和置换群。我们给出了等效加比都林码的一个表征。最后证明了在某些特定关系下,Gabidulin码的等价类数恰好是GF(p/sup m/)中包含的n维向量空间的等价类数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isometries for rank distance and permutation group of Gabidulin codes
The rank distance was introduced by E.M. Gabidulin (see Probl. Pered. Inform., vol.21, p.1-12, 1985). He determined an upper bound for the minimum rank distance of a code. Moreover, he constructed a class of codes which meet this bound: the so-called Gabidulin codes. We first characterize the linear and semilinear isometries for the rank distance. Then we determine the isometry group and the permutation group of Gabidulin codes of any length. We give a characterization of equivalent Gabidulin codes. Finally, we prove that the number of equivalence classes of Gabidulin codes is exactly the number of equivalence classes of vector spaces of dimension n contained in GF(p/sup m/) under some particular relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信