通过动态屏蔽实现安全高效的多智能体强化学习(学生摘要)

Wenli Xiao, Yiwei Lyu, J. Dolan
{"title":"通过动态屏蔽实现安全高效的多智能体强化学习(学生摘要)","authors":"Wenli Xiao, Yiwei Lyu, J. Dolan","doi":"10.1609/aaai.v37i13.27041","DOIUrl":null,"url":null,"abstract":"Multi-agent Reinforcement Learning (MARL) has been increasingly used in safety-critical applications but has no safety guarantees, especially during training. In this paper, we propose dynamic shielding, a novel decentralized MARL framework to ensure safety in both training and deployment phases. Our framework leverages Shield, a reactive system running in parallel with the reinforcement learning algorithm to monitor and correct agents' behavior. In our algorithm, shields dynamically split and merge according to the environment state in order to maintain decentralization and avoid conservative behaviors while enjoying formal safety guarantees. We demonstrate the effectiveness of MARL with dynamic shielding in the mobile navigation scenario.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"30 7","pages":"16362-16363"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tackling Safe and Efficient Multi-Agent Reinforcement Learning via Dynamic Shielding (Student Abstract)\",\"authors\":\"Wenli Xiao, Yiwei Lyu, J. Dolan\",\"doi\":\"10.1609/aaai.v37i13.27041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-agent Reinforcement Learning (MARL) has been increasingly used in safety-critical applications but has no safety guarantees, especially during training. In this paper, we propose dynamic shielding, a novel decentralized MARL framework to ensure safety in both training and deployment phases. Our framework leverages Shield, a reactive system running in parallel with the reinforcement learning algorithm to monitor and correct agents' behavior. In our algorithm, shields dynamically split and merge according to the environment state in order to maintain decentralization and avoid conservative behaviors while enjoying formal safety guarantees. We demonstrate the effectiveness of MARL with dynamic shielding in the mobile navigation scenario.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"30 7\",\"pages\":\"16362-16363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i13.27041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i13.27041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多智能体强化学习(MARL)越来越多地应用于安全关键应用,但它没有安全保证,特别是在训练过程中。在本文中,我们提出了动态屏蔽,一种新的分散的MARL框架,以确保在训练和部署阶段的安全。我们的框架利用Shield,一个与强化学习算法并行运行的反应系统来监控和纠正代理的行为。在我们的算法中,屏蔽根据环境状态动态拆分和合并,以保持去中心化,避免保守行为,同时享有正式的安全保证。我们演示了带动态屏蔽的MARL在移动导航场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tackling Safe and Efficient Multi-Agent Reinforcement Learning via Dynamic Shielding (Student Abstract)
Multi-agent Reinforcement Learning (MARL) has been increasingly used in safety-critical applications but has no safety guarantees, especially during training. In this paper, we propose dynamic shielding, a novel decentralized MARL framework to ensure safety in both training and deployment phases. Our framework leverages Shield, a reactive system running in parallel with the reinforcement learning algorithm to monitor and correct agents' behavior. In our algorithm, shields dynamically split and merge according to the environment state in order to maintain decentralization and avoid conservative behaviors while enjoying formal safety guarantees. We demonstrate the effectiveness of MARL with dynamic shielding in the mobile navigation scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信