{"title":"一类有理五阶差分方程的动力学行为","authors":"B. Oğul, D. Şi̇mşek","doi":"10.15330/cmp.15.1.43-51","DOIUrl":null,"url":null,"abstract":"In this paper, we study the qualitative behavior of the rational recursive equation \\begin{equation*} x_{n+1}=\\frac{x_{n-4}}{\\pm1\\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \\quad n \\in \\mathbb{N}_{0}:=\\{0\\}\\cup\\mathbb N, \\end{equation*} where the initial conditions are arbitrary nonzero real numbers. The main goal of this paper, is to obtain the forms of the solutions of the nonlinear fifth-order difference equations, where the initial conditions are arbitrary positive real numbers. Moreover, we investigate stability, boundedness, oscillation and the periodic character of these solutions. The results presented in this paper improve and extend some corresponding results in the literature.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical behavior of one rational fifth-order difference equation\",\"authors\":\"B. Oğul, D. Şi̇mşek\",\"doi\":\"10.15330/cmp.15.1.43-51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the qualitative behavior of the rational recursive equation \\\\begin{equation*} x_{n+1}=\\\\frac{x_{n-4}}{\\\\pm1\\\\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \\\\quad n \\\\in \\\\mathbb{N}_{0}:=\\\\{0\\\\}\\\\cup\\\\mathbb N, \\\\end{equation*} where the initial conditions are arbitrary nonzero real numbers. The main goal of this paper, is to obtain the forms of the solutions of the nonlinear fifth-order difference equations, where the initial conditions are arbitrary positive real numbers. Moreover, we investigate stability, boundedness, oscillation and the periodic character of these solutions. The results presented in this paper improve and extend some corresponding results in the literature.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.43-51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.43-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了初始条件为任意非零实数的有理递推方程\begin{equation*} x_{n+1}=\frac{x_{n-4}}{\pm1\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \quad n \in \mathbb{N}_{0}:=\{0\}\cup\mathbb N, \end{equation*}的定性性质。本文的主要目的是得到初始条件为任意正实数的非线性五阶差分方程的解的形式。此外,我们还研究了这些解的稳定性、有界性、振荡性和周期性。本文的结果改进和推广了文献中一些相应的结果。
Dynamical behavior of one rational fifth-order difference equation
In this paper, we study the qualitative behavior of the rational recursive equation \begin{equation*} x_{n+1}=\frac{x_{n-4}}{\pm1\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \quad n \in \mathbb{N}_{0}:=\{0\}\cup\mathbb N, \end{equation*} where the initial conditions are arbitrary nonzero real numbers. The main goal of this paper, is to obtain the forms of the solutions of the nonlinear fifth-order difference equations, where the initial conditions are arbitrary positive real numbers. Moreover, we investigate stability, boundedness, oscillation and the periodic character of these solutions. The results presented in this paper improve and extend some corresponding results in the literature.