稳定𝔸1-connectivity在一个基地上

IF 1.2 1区 数学 Q1 MATHEMATICS
A. E. Druzhinin
{"title":"稳定𝔸1-connectivity在一个基地上","authors":"A. E. Druzhinin","doi":"10.1515/crelle-2022-0048","DOIUrl":null,"url":null,"abstract":"Abstract Morel’s stable connectivity theorem states the vanishing of the sheaves of the negative motivic homotopy groups π ¯ i s ⁢ ( Y ) {\\underline{\\pi}^{s}_{i}(Y)} and π ¯ i + j , j s ⁢ ( Y ) {\\underline{\\pi}^{s}_{i+j,j}(Y)} , i < 0 {i<0} , in the stable motivic homotopy categories 𝐒𝐇 S 1 ⁢ ( k ) {\\mathbf{SH}^{S^{1}}(k)} and 𝐒𝐇 ⁢ ( k ) {\\mathbf{SH}(k)} for an arbitrary smooth scheme Y over a field k. Originally the same property was conjectured in the relative case over a base scheme S. In view of Ayoub’s conterexamples the modified version of the conjecture states the vanishing of stable motivic homotopy groups π ¯ i s ⁢ ( Y ) {\\underline{\\pi}^{s}_{i}(Y)} (and π ¯ i + j , j s ⁢ ( Y ) {\\underline{\\pi}^{s}_{i+j,j}(Y)} ) for i < - d {i<-d} , where d = dim ⁡ S {d=\\dim S} is the Krull dimension. The latter version of the conjecture is proven over noetherian domains of finite Krull dimension under the assumption that residue fields of the base scheme are infinite. This is the result by J. Schmidt and F. Strunk for Dedekind schemes case, and the result by N. Deshmukh, A. Hogadi, G. Kulkarni and S. Yadavand for the case of noetherian domains of an arbitrary dimension. In the article, we prove the result for any locally noetharian base scheme of finite Krull dimension without the assumption on the residue fields, in particular for 𝐒𝐇 S 1 ⁢ ( ℤ ) {\\mathbf{SH}^{S^{1}}(\\mathbb{Z})} and 𝐒𝐇 ⁢ ( ℤ ) {\\mathbf{SH}(\\mathbb{Z})} . In the appendix, we modify the arguments used for the main result to obtain the independent proof of Gabber’s Presentation Lemma over finite fields.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable 𝔸1-connectivity over a base\",\"authors\":\"A. E. Druzhinin\",\"doi\":\"10.1515/crelle-2022-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Morel’s stable connectivity theorem states the vanishing of the sheaves of the negative motivic homotopy groups π ¯ i s ⁢ ( Y ) {\\\\underline{\\\\pi}^{s}_{i}(Y)} and π ¯ i + j , j s ⁢ ( Y ) {\\\\underline{\\\\pi}^{s}_{i+j,j}(Y)} , i < 0 {i<0} , in the stable motivic homotopy categories 𝐒𝐇 S 1 ⁢ ( k ) {\\\\mathbf{SH}^{S^{1}}(k)} and 𝐒𝐇 ⁢ ( k ) {\\\\mathbf{SH}(k)} for an arbitrary smooth scheme Y over a field k. Originally the same property was conjectured in the relative case over a base scheme S. In view of Ayoub’s conterexamples the modified version of the conjecture states the vanishing of stable motivic homotopy groups π ¯ i s ⁢ ( Y ) {\\\\underline{\\\\pi}^{s}_{i}(Y)} (and π ¯ i + j , j s ⁢ ( Y ) {\\\\underline{\\\\pi}^{s}_{i+j,j}(Y)} ) for i < - d {i<-d} , where d = dim ⁡ S {d=\\\\dim S} is the Krull dimension. The latter version of the conjecture is proven over noetherian domains of finite Krull dimension under the assumption that residue fields of the base scheme are infinite. This is the result by J. Schmidt and F. Strunk for Dedekind schemes case, and the result by N. Deshmukh, A. Hogadi, G. Kulkarni and S. Yadavand for the case of noetherian domains of an arbitrary dimension. In the article, we prove the result for any locally noetharian base scheme of finite Krull dimension without the assumption on the residue fields, in particular for 𝐒𝐇 S 1 ⁢ ( ℤ ) {\\\\mathbf{SH}^{S^{1}}(\\\\mathbb{Z})} and 𝐒𝐇 ⁢ ( ℤ ) {\\\\mathbf{SH}(\\\\mathbb{Z})} . In the appendix, we modify the arguments used for the main result to obtain the independent proof of Gabber’s Presentation Lemma over finite fields.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0048\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Morel稳定连通性定理证明了负动力同伦群π¯is²(Y) {\underline{\pi} ^{s_i}({Y)和π}¯i+j,j s²(Y) }{\underline{\pi} ^s_i{+}j,{j(Y)}, i<}0 i<0{,对于任意}光滑方案(k){\mathbf{SH} ^S²(k)和²(k) {{}}}{\mathbf{SH} (k)上,最初在基方案S上的相对情况下推测出了相同的性质。鉴于Ayoub的反例,该猜想的修正版本说明了稳定动力同伦群π¯i S²(Y) }{\underline{\pi} ^s_i(Y)(和π¯i + j)的消失。j {s}²(Y{) }}{\underline{\pi} ^s_i+j,j(Y))对于i{<}-{d i<-d},其中}d= dim (s) d{= }{\dim s是}Krull维。在有限Krull维的noether域上,假设基格式的剩余域是无限的,证明了后一种猜想。这是J. Schmidt和F. Strunk对于Dedekind方案的结果,以及N. Deshmukh, A. Hogadi, G. Kulkarni和S. Yadavand对于任意维的noetherian域的结果。在本文中,我们证明了在不假设剩余域的情况下,对于任意有限Krull维的局部noetharian基格式的结果,特别是对于1s (0) {\mathbf{SH} ^S^1({{}}\mathbb{Z})}和²(0){\mathbf{SH} (\mathbb{Z})}。在附录中,我们修改了用于主要结果的参数,以获得有限域上Gabber的表示引理的独立证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable 𝔸1-connectivity over a base
Abstract Morel’s stable connectivity theorem states the vanishing of the sheaves of the negative motivic homotopy groups π ¯ i s ⁢ ( Y ) {\underline{\pi}^{s}_{i}(Y)} and π ¯ i + j , j s ⁢ ( Y ) {\underline{\pi}^{s}_{i+j,j}(Y)} , i < 0 {i<0} , in the stable motivic homotopy categories 𝐒𝐇 S 1 ⁢ ( k ) {\mathbf{SH}^{S^{1}}(k)} and 𝐒𝐇 ⁢ ( k ) {\mathbf{SH}(k)} for an arbitrary smooth scheme Y over a field k. Originally the same property was conjectured in the relative case over a base scheme S. In view of Ayoub’s conterexamples the modified version of the conjecture states the vanishing of stable motivic homotopy groups π ¯ i s ⁢ ( Y ) {\underline{\pi}^{s}_{i}(Y)} (and π ¯ i + j , j s ⁢ ( Y ) {\underline{\pi}^{s}_{i+j,j}(Y)} ) for i < - d {i<-d} , where d = dim ⁡ S {d=\dim S} is the Krull dimension. The latter version of the conjecture is proven over noetherian domains of finite Krull dimension under the assumption that residue fields of the base scheme are infinite. This is the result by J. Schmidt and F. Strunk for Dedekind schemes case, and the result by N. Deshmukh, A. Hogadi, G. Kulkarni and S. Yadavand for the case of noetherian domains of an arbitrary dimension. In the article, we prove the result for any locally noetharian base scheme of finite Krull dimension without the assumption on the residue fields, in particular for 𝐒𝐇 S 1 ⁢ ( ℤ ) {\mathbf{SH}^{S^{1}}(\mathbb{Z})} and 𝐒𝐇 ⁢ ( ℤ ) {\mathbf{SH}(\mathbb{Z})} . In the appendix, we modify the arguments used for the main result to obtain the independent proof of Gabber’s Presentation Lemma over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信