定向能沉积法沉积钨铬钴合金涂层

J. Vavřík, T. Hrbáčková, P. Salvetr, M. Brázda
{"title":"定向能沉积法沉积钨铬钴合金涂层","authors":"J. Vavřík, T. Hrbáčková, P. Salvetr, M. Brázda","doi":"10.37904/metal.2020.3559","DOIUrl":null,"url":null,"abstract":"This paper explores a protective stellite coating on 1.4922 martensitic steel. Stellite coatings are often used to improve the properties of the part’s surface. The microstructure of the sample was analysed and its hardness measured. Protective coatings enhance mechanical and corrosion properties of the substrate, and thus extend the life of the respective part. They can be created by galvanizing, ion implantation, thermal spraying, or by more recent methods, such as laser cladding, DED (directed energy deposition) and others. DED is one of the metal deposition processes that fall in the AM category (additive manufacturing). It was used to deposit the protective coating in the present study. DED is an evolving technology which is suitable not only for prototype development, but also for promising applications involving surface treatment and repairs of functional parts. DED uses a laser beam as a thermal source to melt powder which is blown concentrically with the laser beam and the protective gas. The unique advantage of this method is a very good cohesion and bonding between the substrate and the deposited layer with a smaller HAZ (heat-affected zone). It produces comparatively few inhomogeneities and defects, which makes it a promising technique for protective layer applications. Stellite was chosen as a protective coating material because this group of alloys exhibits excellent properties such as high wear resistance, abrasion resistance, superior corrosion resistance and erosion resistance. These are relevant in many industrial sectors, such as power generation, aerospace and others. Stellite 21 was used in the present study.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stellite coating deposited by directED energy deposition\",\"authors\":\"J. Vavřík, T. Hrbáčková, P. Salvetr, M. Brázda\",\"doi\":\"10.37904/metal.2020.3559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a protective stellite coating on 1.4922 martensitic steel. Stellite coatings are often used to improve the properties of the part’s surface. The microstructure of the sample was analysed and its hardness measured. Protective coatings enhance mechanical and corrosion properties of the substrate, and thus extend the life of the respective part. They can be created by galvanizing, ion implantation, thermal spraying, or by more recent methods, such as laser cladding, DED (directed energy deposition) and others. DED is one of the metal deposition processes that fall in the AM category (additive manufacturing). It was used to deposit the protective coating in the present study. DED is an evolving technology which is suitable not only for prototype development, but also for promising applications involving surface treatment and repairs of functional parts. DED uses a laser beam as a thermal source to melt powder which is blown concentrically with the laser beam and the protective gas. The unique advantage of this method is a very good cohesion and bonding between the substrate and the deposited layer with a smaller HAZ (heat-affected zone). It produces comparatively few inhomogeneities and defects, which makes it a promising technique for protective layer applications. Stellite was chosen as a protective coating material because this group of alloys exhibits excellent properties such as high wear resistance, abrasion resistance, superior corrosion resistance and erosion resistance. These are relevant in many industrial sectors, such as power generation, aerospace and others. Stellite 21 was used in the present study.\",\"PeriodicalId\":21337,\"journal\":{\"name\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了1.4922马氏体钢表面的钨铬钴合金保护涂层。钨铬钴合金涂层常用于改善零件表面的性能。分析了试样的显微组织,测定了试样的硬度。保护涂层提高了基材的机械性能和腐蚀性能,从而延长了相应部件的寿命。它们可以通过镀锌、离子注入、热喷涂或最近的方法(如激光熔覆、DED(定向能沉积)等)来制造。DED是属于AM(增材制造)类别的金属沉积工艺之一。本研究用它来沉积保护涂层。DED是一项不断发展的技术,不仅适用于原型开发,而且适用于功能部件的表面处理和修复。DED采用激光束作为热源熔化粉末,使粉末与激光束和保护气体同心吹出。该方法的独特优点是衬底与沉积层之间具有良好的凝聚力和结合性,热影响区较小。它产生相对较少的不均匀性和缺陷,使其成为一种有前途的保护层应用技术。选择钨铬钴合金作为保护涂层材料,是因为这组合金具有优异的性能,如高耐磨性,耐磨性,优异的耐腐蚀性和抗侵蚀性。这些与许多工业部门有关,例如发电、航空航天和其他部门。本研究采用钨铬钴合金21。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stellite coating deposited by directED energy deposition
This paper explores a protective stellite coating on 1.4922 martensitic steel. Stellite coatings are often used to improve the properties of the part’s surface. The microstructure of the sample was analysed and its hardness measured. Protective coatings enhance mechanical and corrosion properties of the substrate, and thus extend the life of the respective part. They can be created by galvanizing, ion implantation, thermal spraying, or by more recent methods, such as laser cladding, DED (directed energy deposition) and others. DED is one of the metal deposition processes that fall in the AM category (additive manufacturing). It was used to deposit the protective coating in the present study. DED is an evolving technology which is suitable not only for prototype development, but also for promising applications involving surface treatment and repairs of functional parts. DED uses a laser beam as a thermal source to melt powder which is blown concentrically with the laser beam and the protective gas. The unique advantage of this method is a very good cohesion and bonding between the substrate and the deposited layer with a smaller HAZ (heat-affected zone). It produces comparatively few inhomogeneities and defects, which makes it a promising technique for protective layer applications. Stellite was chosen as a protective coating material because this group of alloys exhibits excellent properties such as high wear resistance, abrasion resistance, superior corrosion resistance and erosion resistance. These are relevant in many industrial sectors, such as power generation, aerospace and others. Stellite 21 was used in the present study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信