如何使用模型检查发现恶意软件

F. Martinelli, F. Mercaldo, Vittoria Nardone, A. Santone
{"title":"如何使用模型检查发现恶意软件","authors":"F. Martinelli, F. Mercaldo, Vittoria Nardone, A. Santone","doi":"10.1145/3052973.3055157","DOIUrl":null,"url":null,"abstract":"Android operating system is constantly overwhelmed by new sophisticated threats and new zero-day attacks. While aggressive malware, for instance malicious behaviors able to cipher data files or lock the GUI, are not worried to circumvention users by infection (that can try to disinfect the device), there exist malware with the aim to perform malicious actions stealthy, i.e., trying to not manifest their presence to the users. This kind of malware is less recognizable, because users are not aware of their presence. In this paper we propose FormalDroid, a tool able to detect silent malicious beaviours and to localize the malicious payload in Android application. Evaluating real-world malware samples we obtain an accuracy equal to 0.94.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How Discover a Malware using Model Checking\",\"authors\":\"F. Martinelli, F. Mercaldo, Vittoria Nardone, A. Santone\",\"doi\":\"10.1145/3052973.3055157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android operating system is constantly overwhelmed by new sophisticated threats and new zero-day attacks. While aggressive malware, for instance malicious behaviors able to cipher data files or lock the GUI, are not worried to circumvention users by infection (that can try to disinfect the device), there exist malware with the aim to perform malicious actions stealthy, i.e., trying to not manifest their presence to the users. This kind of malware is less recognizable, because users are not aware of their presence. In this paper we propose FormalDroid, a tool able to detect silent malicious beaviours and to localize the malicious payload in Android application. Evaluating real-world malware samples we obtain an accuracy equal to 0.94.\",\"PeriodicalId\":20540,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3052973.3055157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3055157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Android操作系统不断被新的复杂威胁和新的零日攻击所淹没。虽然攻击性恶意软件,例如能够加密数据文件或锁定GUI的恶意行为,并不担心通过感染绕过用户(可以尝试消毒设备),但存在恶意软件,其目的是执行恶意操作隐身,即试图不向用户显示它们的存在。这种恶意软件不太容易识别,因为用户不会意识到它们的存在。在本文中,我们提出了FormalDroid,一个能够检测静默恶意行为并在Android应用程序中定位恶意负载的工具。评估真实世界的恶意软件样本,我们得到的准确率等于0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Discover a Malware using Model Checking
Android operating system is constantly overwhelmed by new sophisticated threats and new zero-day attacks. While aggressive malware, for instance malicious behaviors able to cipher data files or lock the GUI, are not worried to circumvention users by infection (that can try to disinfect the device), there exist malware with the aim to perform malicious actions stealthy, i.e., trying to not manifest their presence to the users. This kind of malware is less recognizable, because users are not aware of their presence. In this paper we propose FormalDroid, a tool able to detect silent malicious beaviours and to localize the malicious payload in Android application. Evaluating real-world malware samples we obtain an accuracy equal to 0.94.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信