{"title":"由B、N、Ge和Sn原子构成的小帽(5,0)之字形碳纳米管的电学和光学性质:DFT理论计算","authors":"M. Kamalian, A. Abbasi, Y. S. Jalili","doi":"10.7508/IJND.2016.04.008","DOIUrl":null,"url":null,"abstract":"In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structures were investigated using the quantum chemical information analysis which leads to the energy band gap, dipole moments, electrical charges and the DOS of these structures. Further TD-DFT calculations were performed to obtain the optical properties of the structure designs to investigate the electron mobility, indicating higher conductivity and higher rectifying voltage in the CNT terminated by Sn.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"51 5","pages":"329-335"},"PeriodicalIF":1.2000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation\",\"authors\":\"M. Kamalian, A. Abbasi, Y. S. Jalili\",\"doi\":\"10.7508/IJND.2016.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structures were investigated using the quantum chemical information analysis which leads to the energy band gap, dipole moments, electrical charges and the DOS of these structures. Further TD-DFT calculations were performed to obtain the optical properties of the structure designs to investigate the electron mobility, indicating higher conductivity and higher rectifying voltage in the CNT terminated by Sn.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":\"51 5\",\"pages\":\"329-335\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2016.04.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.04.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Electrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation
In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structures were investigated using the quantum chemical information analysis which leads to the energy band gap, dipole moments, electrical charges and the DOS of these structures. Further TD-DFT calculations were performed to obtain the optical properties of the structure designs to investigate the electron mobility, indicating higher conductivity and higher rectifying voltage in the CNT terminated by Sn.