不同损失函数下指数分布均值的新收缩熵估计

IF 0.2 Q4 MATHEMATICS
Priyanka Sahni, Raj Kumar
{"title":"不同损失函数下指数分布均值的新收缩熵估计","authors":"Priyanka Sahni, Raj Kumar","doi":"10.26713/cma.v14i1.1912","DOIUrl":null,"url":null,"abstract":". In this paper, a new shrinkage estimator of entropy function for mean of an exponential distribution is proposed. A progressive type censored sample is taken to obtain the estimator. For the new estimator, risk functions and relative risk functions are developed under symmetric and asymmetric loss functions, viz. squared error loss function and LINEX loss function, and new estimator is shown to have better performance than a classical estimator in terms of relative risk","PeriodicalId":43490,"journal":{"name":"Communications in Mathematics and Applications","volume":"IM-30 3","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Shrinkage Entropy Estimator for Mean of Exponential Distribution under Different Loss Functions\",\"authors\":\"Priyanka Sahni, Raj Kumar\",\"doi\":\"10.26713/cma.v14i1.1912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, a new shrinkage estimator of entropy function for mean of an exponential distribution is proposed. A progressive type censored sample is taken to obtain the estimator. For the new estimator, risk functions and relative risk functions are developed under symmetric and asymmetric loss functions, viz. squared error loss function and LINEX loss function, and new estimator is shown to have better performance than a classical estimator in terms of relative risk\",\"PeriodicalId\":43490,\"journal\":{\"name\":\"Communications in Mathematics and Applications\",\"volume\":\"IM-30 3\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26713/cma.v14i1.1912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26713/cma.v14i1.1912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。本文提出了一种新的指数分布均值熵函数的收缩估计。采用递进式截尾样本来获得估计量。对于新估计量,分别在对称损失函数和非对称损失函数下,即误差平方损失函数和LINEX损失函数下,建立了风险函数和相对风险函数,并证明了新估计量在相对风险方面比经典估计量有更好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Shrinkage Entropy Estimator for Mean of Exponential Distribution under Different Loss Functions
. In this paper, a new shrinkage estimator of entropy function for mean of an exponential distribution is proposed. A progressive type censored sample is taken to obtain the estimator. For the new estimator, risk functions and relative risk functions are developed under symmetric and asymmetric loss functions, viz. squared error loss function and LINEX loss function, and new estimator is shown to have better performance than a classical estimator in terms of relative risk
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
53
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信