毛细管放电抽运46.9 nm激光器的多通放大论证

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Dongdi Zhao, Yongpeng Zhao, Bo An, Jiaqi Li, H. Cui
{"title":"毛细管放电抽运46.9 nm激光器的多通放大论证","authors":"Dongdi Zhao, Yongpeng Zhao, Bo An, Jiaqi Li, H. Cui","doi":"10.1063/5.0150165","DOIUrl":null,"url":null,"abstract":"Using a plane–plane resonator composed of silicon carbide mirrors, we achieve for the first time multi-pass amplification of a 46.9 nm laser pumped by capillary discharge. In terms of the temporal characteristics, for an initial argon pressure of 17 Pa, triple-pass amplification of the laser is obtained at a delay time between the pre-pulse and the main pulse currents of 40 µs, and quadruple-pass amplification is obtained at a delay time of 50 µs. The experimental results show that the gain duration of the plasma column is more than 6 ns. In terms of spatial characteristics, the spot of the output laser has a reduced full width at half maximum divergence compared with that from a laser without a resonator.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"1 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of multi-pass amplification of 46.9 nm laser pumped by capillary discharge\",\"authors\":\"Dongdi Zhao, Yongpeng Zhao, Bo An, Jiaqi Li, H. Cui\",\"doi\":\"10.1063/5.0150165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a plane–plane resonator composed of silicon carbide mirrors, we achieve for the first time multi-pass amplification of a 46.9 nm laser pumped by capillary discharge. In terms of the temporal characteristics, for an initial argon pressure of 17 Pa, triple-pass amplification of the laser is obtained at a delay time between the pre-pulse and the main pulse currents of 40 µs, and quadruple-pass amplification is obtained at a delay time of 50 µs. The experimental results show that the gain duration of the plasma column is more than 6 ns. In terms of spatial characteristics, the spot of the output laser has a reduced full width at half maximum divergence compared with that from a laser without a resonator.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"1 2\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0150165\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0150165","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用由碳化硅反射镜组成的平面-平面谐振腔,首次实现了毛细管放电抽运46.9 nm激光器的多通放大。在时间特性方面,当初始氩气压力为17 Pa时,激光在预脉冲与主脉冲电流之间的延迟时间为40µs时获得三通放大,在延迟时间为50µs时获得四通放大。实验结果表明,等离子体柱的增益持续时间大于6 ns。在空间特性方面,输出激光器的光斑在最大散度的一半处比没有谐振腔的激光器的光斑全宽度减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of multi-pass amplification of 46.9 nm laser pumped by capillary discharge
Using a plane–plane resonator composed of silicon carbide mirrors, we achieve for the first time multi-pass amplification of a 46.9 nm laser pumped by capillary discharge. In terms of the temporal characteristics, for an initial argon pressure of 17 Pa, triple-pass amplification of the laser is obtained at a delay time between the pre-pulse and the main pulse currents of 40 µs, and quadruple-pass amplification is obtained at a delay time of 50 µs. The experimental results show that the gain duration of the plasma column is more than 6 ns. In terms of spatial characteristics, the spot of the output laser has a reduced full width at half maximum divergence compared with that from a laser without a resonator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信