用你的眼睛听:迈向使用深度玻尔兹曼机器的实用视觉语音识别系统

Chao Sui, Bennamoun, R. Togneri
{"title":"用你的眼睛听:迈向使用深度玻尔兹曼机器的实用视觉语音识别系统","authors":"Chao Sui, Bennamoun, R. Togneri","doi":"10.1109/ICCV.2015.26","DOIUrl":null,"url":null,"abstract":"This paper presents a novel feature learning method for visual speech recognition using Deep Boltzmann Machines (DBM). Unlike all existing visual feature extraction techniques which solely extracts features from video sequences, our method is able to explore both acoustic information and visual information to learn a better visual feature representation in the training stage. During the test stage, instead of using both audio and visual signals, only the videos are used for generating the missing audio feature, and both the given visual and given audio features are used to obtain a joint representation. We carried out our experiments on a large scale audio-visual data corpus, and experimental results show that our proposed techniques outperforms the performance of the hadncrafted features and features learned by other commonly used deep learning techniques.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"36 6","pages":"154-162"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines\",\"authors\":\"Chao Sui, Bennamoun, R. Togneri\",\"doi\":\"10.1109/ICCV.2015.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel feature learning method for visual speech recognition using Deep Boltzmann Machines (DBM). Unlike all existing visual feature extraction techniques which solely extracts features from video sequences, our method is able to explore both acoustic information and visual information to learn a better visual feature representation in the training stage. During the test stage, instead of using both audio and visual signals, only the videos are used for generating the missing audio feature, and both the given visual and given audio features are used to obtain a joint representation. We carried out our experiments on a large scale audio-visual data corpus, and experimental results show that our proposed techniques outperforms the performance of the hadncrafted features and features learned by other commonly used deep learning techniques.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"36 6\",\"pages\":\"154-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

提出了一种基于深度玻尔兹曼机(Deep Boltzmann Machines, DBM)的视觉语音识别特征学习方法。与现有的视觉特征提取技术仅从视频序列中提取特征不同,我们的方法能够同时挖掘声音信息和视觉信息,从而在训练阶段学习到更好的视觉特征表示。在测试阶段,不是同时使用音频和视觉信号,而是仅使用视频来生成缺失的音频特征,并且同时使用给定的视觉和给定的音频特征来获得联合表示。我们在一个大规模的视听数据语料库上进行了实验,实验结果表明,我们提出的技术优于手工特征和其他常用深度学习技术学习的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines
This paper presents a novel feature learning method for visual speech recognition using Deep Boltzmann Machines (DBM). Unlike all existing visual feature extraction techniques which solely extracts features from video sequences, our method is able to explore both acoustic information and visual information to learn a better visual feature representation in the training stage. During the test stage, instead of using both audio and visual signals, only the videos are used for generating the missing audio feature, and both the given visual and given audio features are used to obtain a joint representation. We carried out our experiments on a large scale audio-visual data corpus, and experimental results show that our proposed techniques outperforms the performance of the hadncrafted features and features learned by other commonly used deep learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信