深度学习随机二维电子系统中的量子相变

T. Ohtsuki, T. Ohtsuki
{"title":"深度学习随机二维电子系统中的量子相变","authors":"T. Ohtsuki, T. Ohtsuki","doi":"10.7566/JPSJ.85.123706","DOIUrl":null,"url":null,"abstract":"Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum and anomalous quantum Hall insulator, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but due to the random nature of systems, judging the matter phase from eigenfunctions is difficult. Here we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition as well as disordered Chern insulator-Anderson insulator transition is discussed.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems\",\"authors\":\"T. Ohtsuki, T. Ohtsuki\",\"doi\":\"10.7566/JPSJ.85.123706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum and anomalous quantum Hall insulator, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but due to the random nature of systems, judging the matter phase from eigenfunctions is difficult. Here we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition as well as disordered Chern insulator-Anderson insulator transition is discussed.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7566/JPSJ.85.123706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.85.123706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

随机电子系统表现出丰富的相,如安德森绝缘体、扩散金属、量子和反常量子霍尔绝缘体、Weyl半金属以及强/弱拓扑绝缘体。每个物质相的本征函数都有其特定的特征,但由于系统的随机性,从本征函数判断物质相比较困难。在这里,我们提出了深度学习算法来捕捉特征函数的特征。讨论了局域-非局域跃迁和无序陈氏绝缘子-安德森绝缘子跃迁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum and anomalous quantum Hall insulator, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but due to the random nature of systems, judging the matter phase from eigenfunctions is difficult. Here we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition as well as disordered Chern insulator-Anderson insulator transition is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信