带VMO系数抛物方程强解的Morrey正则性

Lubomira G Softova
{"title":"带VMO系数抛物方程强解的Morrey正则性","authors":"Lubomira G Softova","doi":"10.1016/S0764-4442(01)02107-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a regular oblique derivative problem for a linear parabolic operator <span><math><mtext>P</mtext></math></span> with VMO principal coefficients. Its unique strong solvability is proved in [15], when <span><math><mtext>P</mtext><mtext>u∈</mtext><mtext>L</mtext><msup><mi></mi><mn>p</mn></msup><mtext>(Q</mtext><msub><mi></mi><mn>T</mn></msub><mtext>)</mtext></math></span>. Our goal here is to show that the solution belongs to the parabolic Morrey space W<sub><em>p</em>,<em>λ</em></sub><sup>2,1</sup>(<em>Q</em><sub><em>T</em></sub>), when <span><math><mtext>P</mtext><mtext>u∈</mtext><mtext>L</mtext><msup><mi></mi><mn>p,λ</mn></msup><mtext>(Q</mtext><msub><mi></mi><mn>T</mn></msub><mtext>)</mtext></math></span>, <em>p</em>∈(1,∞), <em>λ</em>∈(0,<em>n</em>+2), and <em>Q</em><sub><em>T</em></sub> is a cylinder in <span><math><mtext>R</mtext><msub><mi></mi><mn>+</mn></msub><msup><mi></mi><mn>n+1</mn></msup></math></span>. The a priori estimates of the solution are derived through L<sup><em>p</em>,<em>λ</em></sup> estimates for singular and nonsingular integral operators.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 635-640"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02107-3","citationCount":"2","resultStr":"{\"title\":\"Morrey regularity of strong solutions to parabolic equations with VMO coefficients\",\"authors\":\"Lubomira G Softova\",\"doi\":\"10.1016/S0764-4442(01)02107-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a regular oblique derivative problem for a linear parabolic operator <span><math><mtext>P</mtext></math></span> with VMO principal coefficients. Its unique strong solvability is proved in [15], when <span><math><mtext>P</mtext><mtext>u∈</mtext><mtext>L</mtext><msup><mi></mi><mn>p</mn></msup><mtext>(Q</mtext><msub><mi></mi><mn>T</mn></msub><mtext>)</mtext></math></span>. Our goal here is to show that the solution belongs to the parabolic Morrey space W<sub><em>p</em>,<em>λ</em></sub><sup>2,1</sup>(<em>Q</em><sub><em>T</em></sub>), when <span><math><mtext>P</mtext><mtext>u∈</mtext><mtext>L</mtext><msup><mi></mi><mn>p,λ</mn></msup><mtext>(Q</mtext><msub><mi></mi><mn>T</mn></msub><mtext>)</mtext></math></span>, <em>p</em>∈(1,∞), <em>λ</em>∈(0,<em>n</em>+2), and <em>Q</em><sub><em>T</em></sub> is a cylinder in <span><math><mtext>R</mtext><msub><mi></mi><mn>+</mn></msub><msup><mi></mi><mn>n+1</mn></msup></math></span>. The a priori estimates of the solution are derived through L<sup><em>p</em>,<em>λ</em></sup> estimates for singular and nonsingular integral operators.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 635-640\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02107-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑一类主系数为VMO的线性抛物算子P的正则斜导数问题。其独特的强可解性在[15]中得到证明,当Pu∈Lp(QT)时。我们的目标是证明解属于抛物型Morrey空间Wp,λ2,1(QT),当Pu∈Lp,λ(QT), p∈(1,∞),λ∈(0,n+2),且QT是R+n+1中的圆柱体。通过奇异积分算子和非奇异积分算子的Lp、λ估计,得到了解的先验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morrey regularity of strong solutions to parabolic equations with VMO coefficients

We consider a regular oblique derivative problem for a linear parabolic operator P with VMO principal coefficients. Its unique strong solvability is proved in [15], when Pu∈Lp(QT). Our goal here is to show that the solution belongs to the parabolic Morrey space Wp,λ2,1(QT), when Pu∈Lp,λ(QT), p∈(1,∞), λ∈(0,n+2), and QT is a cylinder in R+n+1. The a priori estimates of the solution are derived through Lp,λ estimates for singular and nonsingular integral operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信