疾病和人类生物学的非人类灵长类动物模型:主要组织相容性复合体的影响

Q3 Pharmacology, Toxicology and Pharmaceutics
Gaby G.M. Doxiadis, Ronald E. Bontrop
{"title":"疾病和人类生物学的非人类灵长类动物模型:主要组织相容性复合体的影响","authors":"Gaby G.M. Doxiadis,&nbsp;Ronald E. Bontrop","doi":"10.1016/j.ddmod.2017.11.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>MHC class I and II molecules play an important role in the adaptive immune response. The genes encoding the MHC molecules are highly polymorphic, thus enabling each molecule to bind a unique repertoire of peptides, which are then presented to </span>T cells<span><span><span>, and may induce an immune reaction. MHC class I and II alleles of non-human primates (NHP) have been shown to influence the susceptibility or resistance to various diseases: for example, autoimmune diseases like rheumatoid arthritis and </span>multiple sclerosis. Thus, knowledge of the susceptibility and/or resistance markers is of value for studying these diseases in experimental settings. Furthermore, in AIDS research, HLA class I molecules of human elite controllers have been shown to share a similar peptide binding motif, like the </span>rhesus macaque<span> class I molecules that are linked to elite control. This finding suggests that immunodominant epitopes of MHC molecules associated with SIV control may also be significant in human HIV control. Thus, macaques have been proven to be an excellent model for HIV/SIV research.</span></span></p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2017.11.003","citationCount":"0","resultStr":"{\"title\":\"Non-human primate models for disease and human biology: The impact of the Major Histocompatibility Complex\",\"authors\":\"Gaby G.M. Doxiadis,&nbsp;Ronald E. Bontrop\",\"doi\":\"10.1016/j.ddmod.2017.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>MHC class I and II molecules play an important role in the adaptive immune response. The genes encoding the MHC molecules are highly polymorphic, thus enabling each molecule to bind a unique repertoire of peptides, which are then presented to </span>T cells<span><span><span>, and may induce an immune reaction. MHC class I and II alleles of non-human primates (NHP) have been shown to influence the susceptibility or resistance to various diseases: for example, autoimmune diseases like rheumatoid arthritis and </span>multiple sclerosis. Thus, knowledge of the susceptibility and/or resistance markers is of value for studying these diseases in experimental settings. Furthermore, in AIDS research, HLA class I molecules of human elite controllers have been shown to share a similar peptide binding motif, like the </span>rhesus macaque<span> class I molecules that are linked to elite control. This finding suggests that immunodominant epitopes of MHC molecules associated with SIV control may also be significant in human HIV control. Thus, macaques have been proven to be an excellent model for HIV/SIV research.</span></span></p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2017.11.003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740675717300282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740675717300282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

MHC I类和II类分子在适应性免疫应答中起重要作用。编码MHC分子的基因是高度多态性的,因此使每个分子能够结合独特的肽库,然后将其呈现给T细胞,并可能诱导免疫反应。非人类灵长类动物(NHP)的MHC I类和II类等位基因已被证明影响对各种疾病的易感性或抵抗力:例如,类风湿性关节炎和多发性硬化症等自身免疫性疾病。因此,了解易感性和/或抗性标记对于在实验环境中研究这些疾病是有价值的。此外,在艾滋病研究中,人类精英控制者的HLA I类分子已被证明具有相似的肽结合基序,就像恒河猴精英控制者的I类分子一样。这一发现表明,与SIV控制相关的MHC分子的免疫显性表位也可能在人类HIV控制中具有重要意义。因此,猕猴已被证明是HIV/SIV研究的优秀模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-human primate models for disease and human biology: The impact of the Major Histocompatibility Complex

Non-human primate models for disease and human biology: The impact of the Major Histocompatibility Complex

MHC class I and II molecules play an important role in the adaptive immune response. The genes encoding the MHC molecules are highly polymorphic, thus enabling each molecule to bind a unique repertoire of peptides, which are then presented to T cells, and may induce an immune reaction. MHC class I and II alleles of non-human primates (NHP) have been shown to influence the susceptibility or resistance to various diseases: for example, autoimmune diseases like rheumatoid arthritis and multiple sclerosis. Thus, knowledge of the susceptibility and/or resistance markers is of value for studying these diseases in experimental settings. Furthermore, in AIDS research, HLA class I molecules of human elite controllers have been shown to share a similar peptide binding motif, like the rhesus macaque class I molecules that are linked to elite control. This finding suggests that immunodominant epitopes of MHC molecules associated with SIV control may also be significant in human HIV control. Thus, macaques have been proven to be an excellent model for HIV/SIV research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today: Disease Models
Drug Discovery Today: Disease Models Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信