使用机器学习技术的软件工作量估算

Monika, O. Sangwan
{"title":"使用机器学习技术的软件工作量估算","authors":"Monika, O. Sangwan","doi":"10.1109/CONFLUENCE.2017.7943130","DOIUrl":null,"url":null,"abstract":"Effort Estimation is a very important activity for planning and scheduling of software project life cycle in order to deliver the product on time and within budget. Machine learning techniques are proving very useful to accurately predict software effort values. This paper presents a review of various machine-learning techniques using in estimation of software project effort namely Artificial Neural Network, Fuzzy logic, Analogy estimation etc. Machine learning techniques consistently predicting accurate results because of its learning natures form previously completed projects. This paper summarizes that each technique has its own features and behave differently according to environment so no technique can be preferred over each other.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"427 1","pages":"92-98"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Software effort estimation using machine learning techniques\",\"authors\":\"Monika, O. Sangwan\",\"doi\":\"10.1109/CONFLUENCE.2017.7943130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effort Estimation is a very important activity for planning and scheduling of software project life cycle in order to deliver the product on time and within budget. Machine learning techniques are proving very useful to accurately predict software effort values. This paper presents a review of various machine-learning techniques using in estimation of software project effort namely Artificial Neural Network, Fuzzy logic, Analogy estimation etc. Machine learning techniques consistently predicting accurate results because of its learning natures form previously completed projects. This paper summarizes that each technique has its own features and behave differently according to environment so no technique can be preferred over each other.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"427 1\",\"pages\":\"92-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了在预算范围内按时交付产品,工作量评估是对软件项目生命周期进行计划和调度的一项非常重要的活动。事实证明,机器学习技术对于准确预测软件工作值非常有用。本文介绍了各种机器学习技术在软件项目工作量估计中的应用,即人工神经网络、模糊逻辑、类比估计等。机器学习技术始终预测准确的结果,因为它从以前完成的项目中学习的性质。本文总结了每种技术都有自己的特点,并根据环境的不同表现出不同的行为,因此没有一种技术可以凌驾于其他技术之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software effort estimation using machine learning techniques
Effort Estimation is a very important activity for planning and scheduling of software project life cycle in order to deliver the product on time and within budget. Machine learning techniques are proving very useful to accurately predict software effort values. This paper presents a review of various machine-learning techniques using in estimation of software project effort namely Artificial Neural Network, Fuzzy logic, Analogy estimation etc. Machine learning techniques consistently predicting accurate results because of its learning natures form previously completed projects. This paper summarizes that each technique has its own features and behave differently according to environment so no technique can be preferred over each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信