{"title":"关于图运算的修正Szeged索引的注解","authors":"N. Dehgardi","doi":"10.22052/IJMC.2017.58647.1228","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper, we compute the revised Szeged index of the join and corona product of graphs.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Note on Revised Szeged Index of Graph Operations\",\"authors\":\"N. Dehgardi\",\"doi\":\"10.22052/IJMC.2017.58647.1228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper, we compute the revised Szeged index of the join and corona product of graphs.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2017.58647.1228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.58647.1228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
摘要
设$G$是一个有边集$E(G)$ $的有限简单图。修正后的塞格德指数定义为:$Sz^{*}(G)=sum_{e=uvin e (G)}(n_u(e) |G)+frac{n_{G}(e)}{2})(n_v(e|G))+frac{n_{G}(e)}{2}),其中$n_u(e|G)$表示$G$中离$u$比离$v$近的顶点数,$ n_{G}(e)$表示$G$中离$u$比离$v$近的顶点数,$ $n_{G}(e)$表示$e$在$G$中距离$e$相等的顶点数。在本文中,我们计算了图的连接和电晕积的修正塞格德指数。
A Note on Revised Szeged Index of Graph Operations
Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper, we compute the revised Szeged index of the join and corona product of graphs.