有限表示的pro-p群的同调扭转增长

N. Nikolov
{"title":"有限表示的pro-p群的同调扭转增长","authors":"N. Nikolov","doi":"10.1142/s021819672250045x","DOIUrl":null,"url":null,"abstract":"We prove that torsion in the abelianizations of open normal subgroups in finitely presented pro-[Formula: see text] groups can grow arbitrarily fast. By way of contrast in [Formula: see text]-adic analytic groups the torsion growth is at most polynomial.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"32 4","pages":"1071-1081"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homology torsion growth of finitely presented pro-p groups\",\"authors\":\"N. Nikolov\",\"doi\":\"10.1142/s021819672250045x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that torsion in the abelianizations of open normal subgroups in finitely presented pro-[Formula: see text] groups can grow arbitrarily fast. By way of contrast in [Formula: see text]-adic analytic groups the torsion growth is at most polynomial.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"32 4\",\"pages\":\"1071-1081\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021819672250045x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021819672250045x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在有限呈现的群[公式:见文]群中开正规子群的阿贝尔化中的扭转可以任意快速增长。与[公式:见文]-进解析群相比,扭转增长至多是多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homology torsion growth of finitely presented pro-p groups
We prove that torsion in the abelianizations of open normal subgroups in finitely presented pro-[Formula: see text] groups can grow arbitrarily fast. By way of contrast in [Formula: see text]-adic analytic groups the torsion growth is at most polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信