{"title":"M. B. Levin关于特殊序列和点集的精确差下界的证明(综述)","authors":"Lisa Kaltenböck, Wolfgang Stockinger","doi":"10.2478/udt-2018-0014","DOIUrl":null,"url":null,"abstract":"Abstract The goal of this overview article is to give a tangible presentation of the breakthrough works in discrepancy theory [3, 5] by M. B. Levin. These works provide proofs for the exact lower discrepancy bounds of Halton’s sequence and a certain class of (t, s)-sequences. Our survey aims at highlighting the major ideas of the proofs and we discuss further implications of the employed methods. Moreover, we derive extensions of Levin’s results.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"27 1","pages":"103 - 130"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On M. B. Levin’s Proofs for The Exact Lower Discrepancy Bounds of Special Sequences and Point Sets (A Survey)\",\"authors\":\"Lisa Kaltenböck, Wolfgang Stockinger\",\"doi\":\"10.2478/udt-2018-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The goal of this overview article is to give a tangible presentation of the breakthrough works in discrepancy theory [3, 5] by M. B. Levin. These works provide proofs for the exact lower discrepancy bounds of Halton’s sequence and a certain class of (t, s)-sequences. Our survey aims at highlighting the major ideas of the proofs and we discuss further implications of the employed methods. Moreover, we derive extensions of Levin’s results.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"27 1\",\"pages\":\"103 - 130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2018-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2018-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
这篇综述文章的目的是对M. B. Levin在差异理论[3,5]方面的突破性工作给出一个具体的介绍。这些工作为Halton序列和一类(t, s)-序列的精确下差界提供了证明。我们的调查旨在突出证明的主要思想,并讨论所采用方法的进一步含义。此外,我们推导了Levin结果的推广。
On M. B. Levin’s Proofs for The Exact Lower Discrepancy Bounds of Special Sequences and Point Sets (A Survey)
Abstract The goal of this overview article is to give a tangible presentation of the breakthrough works in discrepancy theory [3, 5] by M. B. Levin. These works provide proofs for the exact lower discrepancy bounds of Halton’s sequence and a certain class of (t, s)-sequences. Our survey aims at highlighting the major ideas of the proofs and we discuss further implications of the employed methods. Moreover, we derive extensions of Levin’s results.