城市多雨环境下可靠的单眼自运动估计系统

Huaiyang Huang, Yuxiang Sun, Ming Liu
{"title":"城市多雨环境下可靠的单眼自运动估计系统","authors":"Huaiyang Huang, Yuxiang Sun, Ming Liu","doi":"10.1109/ITSC.2019.8916977","DOIUrl":null,"url":null,"abstract":"Visual Simultaneous Localization and Mapping (SLAM) systems assume a static world. They usually fail under adverse weather conditions. In this paper, we propose a robust monocular SLAM system that is able to work under rainy conditions in urban environments reliably. To recover camera ego-motion from images with rain streaks, we apply a superpixel-based image content alignment method for the static background modelling. With coarse outputs estimated through averaging temporal matches, image details are recovered by a Convolutional Neural Network (CNN). Based on the statistic distribution of intensity variance between original and reconstructed image pairs, a robust and noise-sensitive weight function is explored for rejecting outliers when estimating camera poses. Quantitative evaluation results on the CARLA and synthetic KITTI datasets demonstrate the reliability of the proposed system and its superiority over the state-of-the-art approaches.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"27 12","pages":"1290-1297"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments\",\"authors\":\"Huaiyang Huang, Yuxiang Sun, Ming Liu\",\"doi\":\"10.1109/ITSC.2019.8916977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Simultaneous Localization and Mapping (SLAM) systems assume a static world. They usually fail under adverse weather conditions. In this paper, we propose a robust monocular SLAM system that is able to work under rainy conditions in urban environments reliably. To recover camera ego-motion from images with rain streaks, we apply a superpixel-based image content alignment method for the static background modelling. With coarse outputs estimated through averaging temporal matches, image details are recovered by a Convolutional Neural Network (CNN). Based on the statistic distribution of intensity variance between original and reconstructed image pairs, a robust and noise-sensitive weight function is explored for rejecting outliers when estimating camera poses. Quantitative evaluation results on the CARLA and synthetic KITTI datasets demonstrate the reliability of the proposed system and its superiority over the state-of-the-art approaches.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"27 12\",\"pages\":\"1290-1297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8916977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视觉同步定位与地图(SLAM)系统假设一个静态世界。它们通常在恶劣的天气条件下失效。在本文中,我们提出了一个鲁棒的单目SLAM系统,能够在城市环境的多雨条件下可靠地工作。为了从带有雨纹的图像中恢复相机的自运动,我们应用了一种基于超像素的图像内容对齐方法进行静态背景建模。通过平均时间匹配估计粗输出,通过卷积神经网络(CNN)恢复图像细节。基于原始图像和重建图像对强度方差的统计分布,探索了一种鲁棒且对噪声敏感的权重函数,用于在估计相机姿态时剔除异常值。在CARLA和合成KITTI数据集上的定量评估结果证明了所提出系统的可靠性及其优于最先进方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments
Visual Simultaneous Localization and Mapping (SLAM) systems assume a static world. They usually fail under adverse weather conditions. In this paper, we propose a robust monocular SLAM system that is able to work under rainy conditions in urban environments reliably. To recover camera ego-motion from images with rain streaks, we apply a superpixel-based image content alignment method for the static background modelling. With coarse outputs estimated through averaging temporal matches, image details are recovered by a Convolutional Neural Network (CNN). Based on the statistic distribution of intensity variance between original and reconstructed image pairs, a robust and noise-sensitive weight function is explored for rejecting outliers when estimating camera poses. Quantitative evaluation results on the CARLA and synthetic KITTI datasets demonstrate the reliability of the proposed system and its superiority over the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信