基于深度学习InceptionResNet-V2和VGG-16方法的恶意软件图像分类

Didih Rizki Chandranegara, Jafar Shodiq Djawas, Faiq Azmi Nurfaizi, Zamah Sari
{"title":"基于深度学习InceptionResNet-V2和VGG-16方法的恶意软件图像分类","authors":"Didih Rizki Chandranegara, Jafar Shodiq Djawas, Faiq Azmi Nurfaizi, Zamah Sari","doi":"10.15575/join.v8i1.1051","DOIUrl":null,"url":null,"abstract":"Malware is intentionally designed to damage computers, servers, clients or computer networks. Malware is a general term used to describe any program designed to harm a computer or server. The goal is to commit a crime, such as gaining unauthorized access to a particular system, so as to compromise user security. Most malware still uses the same code to produce another different form of malware variants. Therefore, the ability to classify similar malware variant characteristics into malware families is a good strategy to stop malware. The research is useful for classifying malware on malware samples presented as bytemap grayscale images. The malware classification research focused on 25 malware classes with a total of 9,029 images from the Malimg dataset. This research implements the VGG-16 and InceptionResNet-V2 architectures by running 2 different scenarios, scenario 1 uses the original dataset and the other scenario uses the undersampled dataset. After building the model, each scenario will get an evaluation form such as accuracy, precision, recall, and f1-score. The highest score was obtained in scenario 2 on the VGG-16 method with a score of 94.8% and the lowest in scenario 2 on the InceptionResNet-V2 method with a score of 85.1%.","PeriodicalId":32019,"journal":{"name":"JOIN Jurnal Online Informatika","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Malware Image Classification Using Deep Learning InceptionResNet-V2 and VGG-16 Method\",\"authors\":\"Didih Rizki Chandranegara, Jafar Shodiq Djawas, Faiq Azmi Nurfaizi, Zamah Sari\",\"doi\":\"10.15575/join.v8i1.1051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware is intentionally designed to damage computers, servers, clients or computer networks. Malware is a general term used to describe any program designed to harm a computer or server. The goal is to commit a crime, such as gaining unauthorized access to a particular system, so as to compromise user security. Most malware still uses the same code to produce another different form of malware variants. Therefore, the ability to classify similar malware variant characteristics into malware families is a good strategy to stop malware. The research is useful for classifying malware on malware samples presented as bytemap grayscale images. The malware classification research focused on 25 malware classes with a total of 9,029 images from the Malimg dataset. This research implements the VGG-16 and InceptionResNet-V2 architectures by running 2 different scenarios, scenario 1 uses the original dataset and the other scenario uses the undersampled dataset. After building the model, each scenario will get an evaluation form such as accuracy, precision, recall, and f1-score. The highest score was obtained in scenario 2 on the VGG-16 method with a score of 94.8% and the lowest in scenario 2 on the InceptionResNet-V2 method with a score of 85.1%.\",\"PeriodicalId\":32019,\"journal\":{\"name\":\"JOIN Jurnal Online Informatika\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOIN Jurnal Online Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15575/join.v8i1.1051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOIN Jurnal Online Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/join.v8i1.1051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

恶意软件是故意设计来破坏计算机、服务器、客户端或计算机网络的。恶意软件是一个通用术语,用于描述任何旨在损害计算机或服务器的程序。其目标是实施犯罪,例如获得对特定系统的未经授权的访问,从而危及用户安全。大多数恶意软件仍然使用相同的代码来生成另一种不同形式的恶意软件变体。因此,将相似的恶意软件变体特征分类到恶意软件家族中是一种很好的阻止恶意软件的策略。该研究有助于对以字节图灰度图像形式呈现的恶意软件样本进行分类。恶意软件分类研究集中在25个恶意软件类别上,总共有来自Malimg数据集的9029张图像。本研究通过运行2种不同的场景来实现VGG-16和InceptionResNet-V2架构,场景1使用原始数据集,另一个场景使用欠采样数据集。在构建模型之后,每个场景将获得一个评估表单,如准确性、精度、召回率和f1-score。场景2中VGG-16方法得分最高,为94.8%;场景2中InceptionResNet-V2方法得分最低,为85.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malware Image Classification Using Deep Learning InceptionResNet-V2 and VGG-16 Method
Malware is intentionally designed to damage computers, servers, clients or computer networks. Malware is a general term used to describe any program designed to harm a computer or server. The goal is to commit a crime, such as gaining unauthorized access to a particular system, so as to compromise user security. Most malware still uses the same code to produce another different form of malware variants. Therefore, the ability to classify similar malware variant characteristics into malware families is a good strategy to stop malware. The research is useful for classifying malware on malware samples presented as bytemap grayscale images. The malware classification research focused on 25 malware classes with a total of 9,029 images from the Malimg dataset. This research implements the VGG-16 and InceptionResNet-V2 architectures by running 2 different scenarios, scenario 1 uses the original dataset and the other scenario uses the undersampled dataset. After building the model, each scenario will get an evaluation form such as accuracy, precision, recall, and f1-score. The highest score was obtained in scenario 2 on the VGG-16 method with a score of 94.8% and the lowest in scenario 2 on the InceptionResNet-V2 method with a score of 85.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信