半单李代数的约化子代数与泊松交换性

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Panyushev, O. Yakimova
{"title":"半单李代数的约化子代数与泊松交换性","authors":"D. Panyushev, O. Yakimova","doi":"10.4310/jsg.2022.v20.n4.a4","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak g$ be a semisimple Lie algebra, $\\mathfrak h\\subset\\mathfrak g$ a reductive subalgebra such that $\\mathfrak h^\\perp$ is a complementary $\\mathfrak h$-submodule of $\\mathfrak g$. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra ${\\mathcal S}(\\mathfrak g)$ by taking the subalgebra ${\\mathcal Z}$ generated by the bi-homogeneous components of all $H\\in{\\mathcal S}(\\mathfrak g)^{\\mathfrak g}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras ${\\mathcal Z}$. As a by-product, we prove that ${\\mathcal Z}$ is Poisson commutative if $\\mathfrak h$ is abelian and describe ${\\mathcal Z}$ in the special case when $\\mathfrak h$ is a Cartan subalgebra. In this case, ${\\mathcal Z}$ appears to be polynomial and has the maximal transcendence degree $(\\mathrm{dim}\\,\\mathfrak g+\\mathrm{rk}\\,\\mathfrak g)/2$.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"116 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reductive subalgebras of semisimple Lie algebras and Poisson commutativity\",\"authors\":\"D. Panyushev, O. Yakimova\",\"doi\":\"10.4310/jsg.2022.v20.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak g$ be a semisimple Lie algebra, $\\\\mathfrak h\\\\subset\\\\mathfrak g$ a reductive subalgebra such that $\\\\mathfrak h^\\\\perp$ is a complementary $\\\\mathfrak h$-submodule of $\\\\mathfrak g$. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra ${\\\\mathcal S}(\\\\mathfrak g)$ by taking the subalgebra ${\\\\mathcal Z}$ generated by the bi-homogeneous components of all $H\\\\in{\\\\mathcal S}(\\\\mathfrak g)^{\\\\mathfrak g}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras ${\\\\mathcal Z}$. As a by-product, we prove that ${\\\\mathcal Z}$ is Poisson commutative if $\\\\mathfrak h$ is abelian and describe ${\\\\mathcal Z}$ in the special case when $\\\\mathfrak h$ is a Cartan subalgebra. In this case, ${\\\\mathcal Z}$ appears to be polynomial and has the maximal transcendence degree $(\\\\mathrm{dim}\\\\,\\\\mathfrak g+\\\\mathrm{rk}\\\\,\\\\mathfrak g)/2$.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"116 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n4.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$\mathfrak g$是一个半简单李代数,$\mathfrak h\子集$ mathfrak g$是一个约化子代数,使得$\mathfrak h^\perp$是$\mathfrak g$的补$\mathfrak h$-子模块。1983年,Bogoyavlenski声称,通过取所有$H\ In {\mathcal S}(\mathfrak g)^{\mathfrak g}$的双齐次分量所生成的子代数${\mathcal Z}$,可以得到对称代数${\ mathfrak S}(\mathfrak g)$的一个Poisson交换子代数。但这是错误的,我们提出一个反例。我们也给出了这类子代数的泊松交换性的一个判据。作为副产物,我们证明了如果$\mathfrak h$是阿贝尔的,则${\ mathfrak Z}$是泊松交换的,并且在$\mathfrak h$是Cartan子代数的特殊情况下描述了${\ mathfrak Z}$。在这种情况下,${\mathcal Z}$似乎是一个多项式,并且具有最大超越度$(\ mathm {dim}\,\mathfrak g+\ mathm {rk}\,\mathfrak g)/2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reductive subalgebras of semisimple Lie algebras and Poisson commutativity
Let $\mathfrak g$ be a semisimple Lie algebra, $\mathfrak h\subset\mathfrak g$ a reductive subalgebra such that $\mathfrak h^\perp$ is a complementary $\mathfrak h$-submodule of $\mathfrak g$. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra ${\mathcal S}(\mathfrak g)$ by taking the subalgebra ${\mathcal Z}$ generated by the bi-homogeneous components of all $H\in{\mathcal S}(\mathfrak g)^{\mathfrak g}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras ${\mathcal Z}$. As a by-product, we prove that ${\mathcal Z}$ is Poisson commutative if $\mathfrak h$ is abelian and describe ${\mathcal Z}$ in the special case when $\mathfrak h$ is a Cartan subalgebra. In this case, ${\mathcal Z}$ appears to be polynomial and has the maximal transcendence degree $(\mathrm{dim}\,\mathfrak g+\mathrm{rk}\,\mathfrak g)/2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信