结合直接代价和特征代价的通用密集图像匹配框架

Jim Braux-Zin, R. Dupont, A. Bartoli
{"title":"结合直接代价和特征代价的通用密集图像匹配框架","authors":"Jim Braux-Zin, R. Dupont, A. Bartoli","doi":"10.1109/ICCV.2013.30","DOIUrl":null,"url":null,"abstract":"Dense motion field estimation (typically optical flow, stereo disparity and surface registration) is a key computer vision problem. Many solutions have been proposed to compute small or large displacements, narrow or wide baseline stereo disparity, but a unified methodology is still lacking. We here introduce a general framework that robustly combines direct and feature-based matching. The feature-based cost is built around a novel robust distance function that handles key points and ``weak'' features such as segments. It allows us to use putative feature matches which may contain mismatches to guide dense motion estimation out of local minima. Our framework uses a robust direct data term (AD-Census). It is implemented with a powerful second order Total Generalized Variation regularization with external and self-occlusion reasoning. Our framework achieves state of the art performance in several cases (standard optical flow benchmarks, wide-baseline stereo and non-rigid surface registration). Our framework has a modular design that customizes to specific application needs.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"61 1","pages":"185-192"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"A General Dense Image Matching Framework Combining Direct and Feature-Based Costs\",\"authors\":\"Jim Braux-Zin, R. Dupont, A. Bartoli\",\"doi\":\"10.1109/ICCV.2013.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense motion field estimation (typically optical flow, stereo disparity and surface registration) is a key computer vision problem. Many solutions have been proposed to compute small or large displacements, narrow or wide baseline stereo disparity, but a unified methodology is still lacking. We here introduce a general framework that robustly combines direct and feature-based matching. The feature-based cost is built around a novel robust distance function that handles key points and ``weak'' features such as segments. It allows us to use putative feature matches which may contain mismatches to guide dense motion estimation out of local minima. Our framework uses a robust direct data term (AD-Census). It is implemented with a powerful second order Total Generalized Variation regularization with external and self-occlusion reasoning. Our framework achieves state of the art performance in several cases (standard optical flow benchmarks, wide-baseline stereo and non-rigid surface registration). Our framework has a modular design that customizes to specific application needs.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"61 1\",\"pages\":\"185-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

密集运动场估计(通常是光流、立体视差和表面配准)是一个关键的计算机视觉问题。对于计算大位移或小位移、宽基线或窄基线立体视差,已经提出了许多解决方案,但仍然缺乏统一的方法。我们在这里介绍了一个通用框架,它将直接匹配和基于特征的匹配健壮地结合在一起。基于特征的成本是围绕一个新的鲁棒距离函数建立的,该函数处理关键点和“弱”特征(如片段)。它允许我们使用可能包含不匹配的假定特征匹配来引导密集运动估计脱离局部最小值。我们的框架使用健壮的直接数据项(AD-Census)。该算法采用一种强大的二阶全广义变分正则化方法,并结合外部和自闭塞推理实现。我们的框架在几种情况下实现了最先进的性能(标准光流基准,宽基线立体和非刚性表面配准)。我们的框架采用模块化设计,可以根据特定的应用程序需求进行定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A General Dense Image Matching Framework Combining Direct and Feature-Based Costs
Dense motion field estimation (typically optical flow, stereo disparity and surface registration) is a key computer vision problem. Many solutions have been proposed to compute small or large displacements, narrow or wide baseline stereo disparity, but a unified methodology is still lacking. We here introduce a general framework that robustly combines direct and feature-based matching. The feature-based cost is built around a novel robust distance function that handles key points and ``weak'' features such as segments. It allows us to use putative feature matches which may contain mismatches to guide dense motion estimation out of local minima. Our framework uses a robust direct data term (AD-Census). It is implemented with a powerful second order Total Generalized Variation regularization with external and self-occlusion reasoning. Our framework achieves state of the art performance in several cases (standard optical flow benchmarks, wide-baseline stereo and non-rigid surface registration). Our framework has a modular design that customizes to specific application needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信