通过优化颜色处理实现白细胞的自动多阶段分割

Afaf Tareef, Yang Song, D. Feng, Mei Chen, Weidong (Tom) Cai
{"title":"通过优化颜色处理实现白细胞的自动多阶段分割","authors":"Afaf Tareef, Yang Song, D. Feng, Mei Chen, Weidong (Tom) Cai","doi":"10.1109/ISBI.2017.7950584","DOIUrl":null,"url":null,"abstract":"Segmentation of white blood cells (i.e. leukocytes) is a crucial step toward the development of haematological images analysis of peripheral blood smears. This step, however, is complicated by the complex nature of the different types of white blood cells and their large variations in shape, texture, color, and density. This study addresses this issue and presents a single fully automatic segmentation framework for both nuclei and cytoplasm of the five classes of leukocytes in a microscope blood smear. The proposed framework integrates a priori information of enhanced nuclei color with Gram-Schmidt orthogonalization, and multi-scale morphological enhancement to localize the nuclei, whereas clustering-based seed extraction and watershed are utilized to segment the cytoplasm. The experimental results on two different datasets show that the proposed method works successfully for both nuclei and cytoplasm segmentation, and achieves more accurate segmentation results compared to six leukocytes segmentation methods in the literature.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Automated multi-stage segmentation of white blood cells via optimizing color processing\",\"authors\":\"Afaf Tareef, Yang Song, D. Feng, Mei Chen, Weidong (Tom) Cai\",\"doi\":\"10.1109/ISBI.2017.7950584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of white blood cells (i.e. leukocytes) is a crucial step toward the development of haematological images analysis of peripheral blood smears. This step, however, is complicated by the complex nature of the different types of white blood cells and their large variations in shape, texture, color, and density. This study addresses this issue and presents a single fully automatic segmentation framework for both nuclei and cytoplasm of the five classes of leukocytes in a microscope blood smear. The proposed framework integrates a priori information of enhanced nuclei color with Gram-Schmidt orthogonalization, and multi-scale morphological enhancement to localize the nuclei, whereas clustering-based seed extraction and watershed are utilized to segment the cytoplasm. The experimental results on two different datasets show that the proposed method works successfully for both nuclei and cytoplasm segmentation, and achieves more accurate segmentation results compared to six leukocytes segmentation methods in the literature.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

白细胞(即白细胞)的分割是发展外周血涂片血液学图像分析的关键一步。然而,由于不同类型的白细胞的复杂性以及它们在形状、质地、颜色和密度上的巨大差异,这一步变得复杂起来。本研究解决了这一问题,并提出了一个显微镜下血液涂片中五类白细胞的核和细胞质的单一全自动分割框架。该框架将增强细胞核颜色的先验信息与Gram-Schmidt正交化和多尺度形态学增强相结合来定位细胞核,并利用基于聚类的种子提取和分水岭来分割细胞质。在两个不同的数据集上的实验结果表明,所提出的方法在细胞核和细胞质的分割上都是成功的,并且与文献中的六种白细胞分割方法相比,获得了更准确的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated multi-stage segmentation of white blood cells via optimizing color processing
Segmentation of white blood cells (i.e. leukocytes) is a crucial step toward the development of haematological images analysis of peripheral blood smears. This step, however, is complicated by the complex nature of the different types of white blood cells and their large variations in shape, texture, color, and density. This study addresses this issue and presents a single fully automatic segmentation framework for both nuclei and cytoplasm of the five classes of leukocytes in a microscope blood smear. The proposed framework integrates a priori information of enhanced nuclei color with Gram-Schmidt orthogonalization, and multi-scale morphological enhancement to localize the nuclei, whereas clustering-based seed extraction and watershed are utilized to segment the cytoplasm. The experimental results on two different datasets show that the proposed method works successfully for both nuclei and cytoplasm segmentation, and achieves more accurate segmentation results compared to six leukocytes segmentation methods in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信