锥上复空间的对称对偶性

Q3 Decision Sciences
I. Ahmad, D. Agarwal, Kumar Shiv
{"title":"锥上复空间的对称对偶性","authors":"I. Ahmad, D. Agarwal, Kumar Shiv","doi":"10.2298/YJOR2005015004A","DOIUrl":null,"url":null,"abstract":"Duality theory plays an important role in optimization theory. It has been extensively used for many theoretical and computational problems in mathematical programming. In this paper duality results are established for first and second order Wolfe and Mond-Weir type symmetric dual programs over general polyhedral cones in complex spaces. Corresponding duality relations for nondifferentiable case are also stated. This work will also remove inconsistencies in the earlier work from the literature.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"179 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric duality in complex spaces over cones\",\"authors\":\"I. Ahmad, D. Agarwal, Kumar Shiv\",\"doi\":\"10.2298/YJOR2005015004A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Duality theory plays an important role in optimization theory. It has been extensively used for many theoretical and computational problems in mathematical programming. In this paper duality results are established for first and second order Wolfe and Mond-Weir type symmetric dual programs over general polyhedral cones in complex spaces. Corresponding duality relations for nondifferentiable case are also stated. This work will also remove inconsistencies in the earlier work from the literature.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"179 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/YJOR2005015004A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR2005015004A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

对偶理论在优化理论中占有重要地位。它已被广泛应用于数学规划中的许多理论和计算问题。本文建立了复空间中一般多面体锥上的一、二阶Wolfe和Mond-Weir型对称对偶规划的对偶结果。给出了不可微情况下对应的对偶关系。这项工作还将从文献中删除早期工作中的不一致之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric duality in complex spaces over cones
Duality theory plays an important role in optimization theory. It has been extensively used for many theoretical and computational problems in mathematical programming. In this paper duality results are established for first and second order Wolfe and Mond-Weir type symmetric dual programs over general polyhedral cones in complex spaces. Corresponding duality relations for nondifferentiable case are also stated. This work will also remove inconsistencies in the earlier work from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信