从缠结树对偶中得到缠结树

IF 0.4 Q4 MATHEMATICS, APPLIED
C. Elbracht, Jakob Kneip, Maximilian Teegen
{"title":"从缠结树对偶中得到缠结树","authors":"C. Elbracht, Jakob Kneip, Maximilian Teegen","doi":"10.4310/JOC.2022.v13.n2.a3","DOIUrl":null,"url":null,"abstract":"We demonstrate the versatility of the tangle-tree duality theorem for abstract separation systems by using it to prove tree-of-tangles theorems. This approach allows us to strengthen some of the existing tree-of-tangles theorems by bounding the node degrees in them. We also present a slight strengthening and simplified proof of the duality theorem, which allows us to derive a tree-of-tangles theorem also for tangles of different orders.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"8 3","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Obtaining trees of tangles from tangle-tree duality\",\"authors\":\"C. Elbracht, Jakob Kneip, Maximilian Teegen\",\"doi\":\"10.4310/JOC.2022.v13.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the versatility of the tangle-tree duality theorem for abstract separation systems by using it to prove tree-of-tangles theorems. This approach allows us to strengthen some of the existing tree-of-tangles theorems by bounding the node degrees in them. We also present a slight strengthening and simplified proof of the duality theorem, which allows us to derive a tree-of-tangles theorem also for tangles of different orders.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/JOC.2022.v13.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2022.v13.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

我们用缠结树对偶定理证明了抽象分离系统的缠结树对偶定理的通用性。这种方法允许我们通过限定其中的节点度来加强现有的一些缠结树定理。我们也给出了对偶定理的一个稍微强化和简化的证明,这使得我们也可以为不同阶的缠结导出缠结树定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obtaining trees of tangles from tangle-tree duality
We demonstrate the versatility of the tangle-tree duality theorem for abstract separation systems by using it to prove tree-of-tangles theorems. This approach allows us to strengthen some of the existing tree-of-tangles theorems by bounding the node degrees in them. We also present a slight strengthening and simplified proof of the duality theorem, which allows us to derive a tree-of-tangles theorem also for tangles of different orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信