基于解纠集注意力的对话生成框架与角色感知提示学习

Pingsheng Liu, Zhengjie Huang, Xiechi Zhang, Linlin Wang, Gerard de Melo, Xin Lin, Liang Pang, Liang He
{"title":"基于解纠集注意力的对话生成框架与角色感知提示学习","authors":"Pingsheng Liu, Zhengjie Huang, Xiechi Zhang, Linlin Wang, Gerard de Melo, Xin Lin, Liang Pang, Liang He","doi":"10.1609/aaai.v37i11.26556","DOIUrl":null,"url":null,"abstract":"Endowing dialogue agents with personas is the key to delivering more human-like conversations. However, existing persona-grounded dialogue systems still lack informative details of human conversations and tend to reply with inconsistent and generic responses. One of the main underlying causes is that pre-defined persona sentences are generally short and merely superficial descriptions of personal attributes, making appropriate persona selection and understanding non-trivial. Another challenge is that it is crucial to consider the context and the conversation flow to dynamically determine when to invoke different types of persona signals. To address these problems, we propose a disentangled-attention based pre-training architecture, which incorporates persona-aware prompt learning to bridge the connection between the selected persona and response generation. Our model first exploits the conversation flow to select context-relevant personas, and subsequently enriches the superficial persona descriptions with extra personality traits through persona-aware prompting. Finally, the decoder leverages a disentangled-attention mechanism to flexibly control the reliance on personas and dialogue contexts, and incorporates A*-like keyword-based heuristic estimates for controllable generation. Extensive experiments show that our approach can outperform strong baselines and deliver more consistent and engaging responses on the PERSONA-CHAT dataset.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"10 1","pages":"13255-13263"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Disentangled-Attention Based Framework with Persona-Aware Prompt Learning for Dialogue Generation\",\"authors\":\"Pingsheng Liu, Zhengjie Huang, Xiechi Zhang, Linlin Wang, Gerard de Melo, Xin Lin, Liang Pang, Liang He\",\"doi\":\"10.1609/aaai.v37i11.26556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endowing dialogue agents with personas is the key to delivering more human-like conversations. However, existing persona-grounded dialogue systems still lack informative details of human conversations and tend to reply with inconsistent and generic responses. One of the main underlying causes is that pre-defined persona sentences are generally short and merely superficial descriptions of personal attributes, making appropriate persona selection and understanding non-trivial. Another challenge is that it is crucial to consider the context and the conversation flow to dynamically determine when to invoke different types of persona signals. To address these problems, we propose a disentangled-attention based pre-training architecture, which incorporates persona-aware prompt learning to bridge the connection between the selected persona and response generation. Our model first exploits the conversation flow to select context-relevant personas, and subsequently enriches the superficial persona descriptions with extra personality traits through persona-aware prompting. Finally, the decoder leverages a disentangled-attention mechanism to flexibly control the reliance on personas and dialogue contexts, and incorporates A*-like keyword-based heuristic estimates for controllable generation. Extensive experiments show that our approach can outperform strong baselines and deliver more consistent and engaging responses on the PERSONA-CHAT dataset.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"10 1\",\"pages\":\"13255-13263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i11.26556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i11.26556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

赋予对话代理人物角色是传递更多类似人类对话的关键。然而,现有的基于角色的对话系统仍然缺乏人类对话的信息细节,并且倾向于用不一致和通用的回应来回应。其中一个主要的潜在原因是,预定义的人物角色句子通常很短,只是对个人属性的肤浅描述,这使得适当的人物角色选择和理解变得非常重要。另一个挑战是,考虑上下文和会话流来动态地决定何时调用不同类型的角色信号是至关重要的。为了解决这些问题,我们提出了一种基于解纠缠注意力的预训练架构,该架构结合了角色感知的提示学习,以架起所选角色和响应生成之间的桥梁。我们的模型首先利用会话流来选择与上下文相关的人物角色,然后通过人物角色感知提示来丰富肤浅的人物角色描述,增加额外的人格特征。最后,该解码器利用解纠缠注意力机制来灵活控制对人物角色和对话上下文的依赖,并结合了类似a *的基于关键字的启发式估计来实现可控生成。大量的实验表明,我们的方法可以优于强基线,并在PERSONA-CHAT数据集上提供更一致和更吸引人的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Disentangled-Attention Based Framework with Persona-Aware Prompt Learning for Dialogue Generation
Endowing dialogue agents with personas is the key to delivering more human-like conversations. However, existing persona-grounded dialogue systems still lack informative details of human conversations and tend to reply with inconsistent and generic responses. One of the main underlying causes is that pre-defined persona sentences are generally short and merely superficial descriptions of personal attributes, making appropriate persona selection and understanding non-trivial. Another challenge is that it is crucial to consider the context and the conversation flow to dynamically determine when to invoke different types of persona signals. To address these problems, we propose a disentangled-attention based pre-training architecture, which incorporates persona-aware prompt learning to bridge the connection between the selected persona and response generation. Our model first exploits the conversation flow to select context-relevant personas, and subsequently enriches the superficial persona descriptions with extra personality traits through persona-aware prompting. Finally, the decoder leverages a disentangled-attention mechanism to flexibly control the reliance on personas and dialogue contexts, and incorporates A*-like keyword-based heuristic estimates for controllable generation. Extensive experiments show that our approach can outperform strong baselines and deliver more consistent and engaging responses on the PERSONA-CHAT dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信