感知器层上向量的正态性检验

Y. Karaki, Halina Kaubasa, N. Ivanov
{"title":"感知器层上向量的正态性检验","authors":"Y. Karaki, Halina Kaubasa, N. Ivanov","doi":"10.24018/ejers.2020.5.9.2090","DOIUrl":null,"url":null,"abstract":"Designing optimal topology of network graph is one of the most prevalent issues in neural network applications. Number of hidden layers, number of nodes in layers, activation functions, and other parameters of neural networks must suit the given data set and the prevailing problem. Massive learning datasets prompt a researcher to exploit probability methods in an attempt to find optimal structure of a neural network. Classic Bayesian estimation of network hyperparameters assumes distribution of specific random parameters to be Gaussian. Multivariate Normality Analysis methods are widespread in contemporary applied mathematics. In this article, the normality of probability distribution of vectors on perceptron layers was examined by the Multivariate Normality Test. Ten datasets from University of California, Irvine were selected for the computing experiment. The result of our hypothesis on Gaussian distribution is negative, ensuring that none of the set of vectors passed the criteria of normality.","PeriodicalId":12029,"journal":{"name":"European Journal of Engineering Research and Science","volume":"35 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normality Testing for Vectors on Perceptron Layers\",\"authors\":\"Y. Karaki, Halina Kaubasa, N. Ivanov\",\"doi\":\"10.24018/ejers.2020.5.9.2090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing optimal topology of network graph is one of the most prevalent issues in neural network applications. Number of hidden layers, number of nodes in layers, activation functions, and other parameters of neural networks must suit the given data set and the prevailing problem. Massive learning datasets prompt a researcher to exploit probability methods in an attempt to find optimal structure of a neural network. Classic Bayesian estimation of network hyperparameters assumes distribution of specific random parameters to be Gaussian. Multivariate Normality Analysis methods are widespread in contemporary applied mathematics. In this article, the normality of probability distribution of vectors on perceptron layers was examined by the Multivariate Normality Test. Ten datasets from University of California, Irvine were selected for the computing experiment. The result of our hypothesis on Gaussian distribution is negative, ensuring that none of the set of vectors passed the criteria of normality.\",\"PeriodicalId\":12029,\"journal\":{\"name\":\"European Journal of Engineering Research and Science\",\"volume\":\"35 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Engineering Research and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejers.2020.5.9.2090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejers.2020.5.9.2090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络图的最优拓扑设计是神经网络应用中最常见的问题之一。神经网络的隐藏层数、层内节点数、激活函数和其他参数必须适合给定的数据集和当前问题。大量的学习数据集促使研究人员利用概率方法试图找到神经网络的最佳结构。网络超参数的经典贝叶斯估计假设特定随机参数的分布为高斯分布。多元正态性分析方法在当代应用数学中得到广泛应用。本文采用多元正态性检验来检验感知器层上向量概率分布的正态性。计算实验选择了来自加州大学欧文分校的10个数据集。我们对高斯分布的假设结果是负的,这确保了这组向量都不符合正态性的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normality Testing for Vectors on Perceptron Layers
Designing optimal topology of network graph is one of the most prevalent issues in neural network applications. Number of hidden layers, number of nodes in layers, activation functions, and other parameters of neural networks must suit the given data set and the prevailing problem. Massive learning datasets prompt a researcher to exploit probability methods in an attempt to find optimal structure of a neural network. Classic Bayesian estimation of network hyperparameters assumes distribution of specific random parameters to be Gaussian. Multivariate Normality Analysis methods are widespread in contemporary applied mathematics. In this article, the normality of probability distribution of vectors on perceptron layers was examined by the Multivariate Normality Test. Ten datasets from University of California, Irvine were selected for the computing experiment. The result of our hypothesis on Gaussian distribution is negative, ensuring that none of the set of vectors passed the criteria of normality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信