Kähler胖点格式在1× 1中的微分

Pub Date : 2021-06-01 DOI:10.1216/jca.2021.13.179
E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long
{"title":"Kähler胖点格式在1× 1中的微分","authors":"E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long","doi":"10.1216/jca.2021.13.179","DOIUrl":null,"url":null,"abstract":"Let 𝕏 be a set of K-rational points in ℙ1×ℙ1 over a field K of characteristic zero, let 𝕐 be a fat point scheme supported at 𝕏, and let R𝕐 be the bihomogeneous coordinate ring of 𝕐. In this paper we investigate the module of Kahler differentials ΩR𝕐∕K1. We describe this bigraded R𝕐-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support 𝕏 is a complete intersection or an almost complete intersection in ℙ1×ℙ1. Moreover, we introduce a Kahler different for 𝕐 and use it to characterize ACM reduced schemes in ℙ1×ℙ1 having the Cayley–Bacharach property.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kähler Differentials for Fat Point Schemes in ℙ1×ℙ1\",\"authors\":\"E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long\",\"doi\":\"10.1216/jca.2021.13.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 𝕏 be a set of K-rational points in ℙ1×ℙ1 over a field K of characteristic zero, let 𝕐 be a fat point scheme supported at 𝕏, and let R𝕐 be the bihomogeneous coordinate ring of 𝕐. In this paper we investigate the module of Kahler differentials ΩR𝕐∕K1. We describe this bigraded R𝕐-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support 𝕏 is a complete intersection or an almost complete intersection in ℙ1×ℙ1. Moreover, we introduce a Kahler different for 𝕐 and use it to characterize ACM reduced schemes in ℙ1×ℙ1 having the Cayley–Bacharach property.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2021.13.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设𝕏为特征为0的域K上的K个有理点的集合,设𝕐为支撑在𝕏上的胖点格式,设R𝕐为𝕐的双齐次坐标环。本文研究了Kahler微分ΩR𝕐∕K1的模。我们通过齐次短精确序列显式地描述了该梯度R𝕐-module,并在若干特殊情况下计算了它的希尔伯特函数,特别是当支持𝕏是一个完全交集或一个几乎完全交集在1× 1中的情况下。此外,我们引入了𝕐的Kahler差分,并用它来表征具有Cayley-Bacharach性质的ACM约简方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kähler Differentials for Fat Point Schemes in ℙ1×ℙ1
Let 𝕏 be a set of K-rational points in ℙ1×ℙ1 over a field K of characteristic zero, let 𝕐 be a fat point scheme supported at 𝕏, and let R𝕐 be the bihomogeneous coordinate ring of 𝕐. In this paper we investigate the module of Kahler differentials ΩR𝕐∕K1. We describe this bigraded R𝕐-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support 𝕏 is a complete intersection or an almost complete intersection in ℙ1×ℙ1. Moreover, we introduce a Kahler different for 𝕐 and use it to characterize ACM reduced schemes in ℙ1×ℙ1 having the Cayley–Bacharach property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信