群体突变过程的遗传数学模型

A. N. Volobuev
{"title":"群体突变过程的遗传数学模型","authors":"A. N. Volobuev","doi":"10.14302/issn.2694-1198.jge-19-2756","DOIUrl":null,"url":null,"abstract":"Processes of genetic-mathematical modeling of a population development are considered. A basic distinction in the mathematical description of a family tree and a population is shown. In a family tree alternation of generations has discrete character. In a population there is a continuous alternation of generations. The method of the differential equations is applied for the description of a population. It is shown that mutational process in a population can be described with use of a Green’s function. For radiating influence on a population the universal evolutionary law is found.","PeriodicalId":15918,"journal":{"name":"Journal of Genetic Engineering & Biotechnology","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genetic-Mathematical Modelling of Mutational Processes in a Population\",\"authors\":\"A. N. Volobuev\",\"doi\":\"10.14302/issn.2694-1198.jge-19-2756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processes of genetic-mathematical modeling of a population development are considered. A basic distinction in the mathematical description of a family tree and a population is shown. In a family tree alternation of generations has discrete character. In a population there is a continuous alternation of generations. The method of the differential equations is applied for the description of a population. It is shown that mutational process in a population can be described with use of a Green’s function. For radiating influence on a population the universal evolutionary law is found.\",\"PeriodicalId\":15918,\"journal\":{\"name\":\"Journal of Genetic Engineering & Biotechnology\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14302/issn.2694-1198.jge-19-2756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14302/issn.2694-1198.jge-19-2756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑了种群发展的遗传数学建模过程。在族谱和种群的数学描述中有一个基本的区别。在家谱中,世代交替具有离散性。在一个种群中,有连续的世代交替。用微分方程的方法来描述种群。结果表明,种群中的突变过程可以用格林函数来描述。对于种群的辐射影响,发现了普遍的进化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic-Mathematical Modelling of Mutational Processes in a Population
Processes of genetic-mathematical modeling of a population development are considered. A basic distinction in the mathematical description of a family tree and a population is shown. In a family tree alternation of generations has discrete character. In a population there is a continuous alternation of generations. The method of the differential equations is applied for the description of a population. It is shown that mutational process in a population can be described with use of a Green’s function. For radiating influence on a population the universal evolutionary law is found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信