{"title":"完全流形上正标量曲率的几何","authors":"Bo Zhu","doi":"10.1515/crelle-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the interplay of geometry and positive scalar curvature on a complete, non-compact manifold with non-negative Ricci curvature. On three-dimensional manifold, we prove a minimal volume growth, an estimate of integral of scalar curvature and width. On higher-dimensional manifold, we obtain a volume growth with a stronger condition.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Geometry of positive scalar curvature on complete manifold\",\"authors\":\"Bo Zhu\",\"doi\":\"10.1515/crelle-2022-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the interplay of geometry and positive scalar curvature on a complete, non-compact manifold with non-negative Ricci curvature. On three-dimensional manifold, we prove a minimal volume growth, an estimate of integral of scalar curvature and width. On higher-dimensional manifold, we obtain a volume growth with a stronger condition.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0049\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0049","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometry of positive scalar curvature on complete manifold
Abstract In this paper, we study the interplay of geometry and positive scalar curvature on a complete, non-compact manifold with non-negative Ricci curvature. On three-dimensional manifold, we prove a minimal volume growth, an estimate of integral of scalar curvature and width. On higher-dimensional manifold, we obtain a volume growth with a stronger condition.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.