基于几何结构的360度室内图像深度估计

Lei Jin, Yanyu Xu, Jia Zheng, J. Zhang, Rui Tang, Shugong Xu, Jingyi Yu, Shenghua Gao
{"title":"基于几何结构的360度室内图像深度估计","authors":"Lei Jin, Yanyu Xu, Jia Zheng, J. Zhang, Rui Tang, Shugong Xu, Jingyi Yu, Shenghua Gao","doi":"10.1109/cvpr42600.2020.00097","DOIUrl":null,"url":null,"abstract":"Motivated by the correlation between the depth and the geometric structure of a 360 indoor image, we propose a novel learning-based depth estimation framework that leverages the geometric structure of a scene to conduct depth estimation. Specifically, we represent the geometric structure of an indoor scene as a collection of corners, boundaries and planes. On the one hand, once a depth map is estimated, this geometric structure can be inferred from the estimated depth map; thus, the geometric structure functions as a regularizer for depth estimation. On the other hand, this estimation also benefits from the geometric structure of a scene estimated from an image where the structure functions as a prior. However, furniture in indoor scenes makes it challenging to infer geometric structure from depth or image data. An attention map is inferred to facilitate both depth estimation from features of the geometric structure and also geometric inferences from the estimated depth map. To validate the effectiveness of each component in our framework under controlled conditions, we render a synthetic dataset, Shanghaitech-Kujiale Indoor 360 dataset with 3550 360 indoor images. Extensive experiments on popular datasets validate the effectiveness of our solution. We also demonstrate that our method can also be applied to counterfactual depth.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"206 3","pages":"886-895"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery\",\"authors\":\"Lei Jin, Yanyu Xu, Jia Zheng, J. Zhang, Rui Tang, Shugong Xu, Jingyi Yu, Shenghua Gao\",\"doi\":\"10.1109/cvpr42600.2020.00097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the correlation between the depth and the geometric structure of a 360 indoor image, we propose a novel learning-based depth estimation framework that leverages the geometric structure of a scene to conduct depth estimation. Specifically, we represent the geometric structure of an indoor scene as a collection of corners, boundaries and planes. On the one hand, once a depth map is estimated, this geometric structure can be inferred from the estimated depth map; thus, the geometric structure functions as a regularizer for depth estimation. On the other hand, this estimation also benefits from the geometric structure of a scene estimated from an image where the structure functions as a prior. However, furniture in indoor scenes makes it challenging to infer geometric structure from depth or image data. An attention map is inferred to facilitate both depth estimation from features of the geometric structure and also geometric inferences from the estimated depth map. To validate the effectiveness of each component in our framework under controlled conditions, we render a synthetic dataset, Shanghaitech-Kujiale Indoor 360 dataset with 3550 360 indoor images. Extensive experiments on popular datasets validate the effectiveness of our solution. We also demonstrate that our method can also be applied to counterfactual depth.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"206 3\",\"pages\":\"886-895\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

基于360度室内图像的深度与几何结构之间的相关性,我们提出了一种基于学习的深度估计框架,利用场景的几何结构进行深度估计。具体来说,我们将室内场景的几何结构表示为角、边界和面的集合。一方面,一旦估计了深度图,就可以从估计的深度图中推断出该几何结构;因此,几何结构作为深度估计的正则化器。另一方面,这种估计也受益于从图像中估计的场景的几何结构,其中结构作为先验。然而,室内场景中的家具使从深度或图像数据推断几何结构变得具有挑战性。通过对注意图的推断,既可以从几何结构的特征中进行深度估计,也可以从估计的深度图中进行几何推断。为了验证框架中每个组件在受控条件下的有效性,我们渲染了一个合成数据集,上海科技-酷家乐室内360数据集,其中包含3550张360度室内图像。在流行数据集上的大量实验验证了我们的解决方案的有效性。我们还证明了我们的方法也可以应用于反事实深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery
Motivated by the correlation between the depth and the geometric structure of a 360 indoor image, we propose a novel learning-based depth estimation framework that leverages the geometric structure of a scene to conduct depth estimation. Specifically, we represent the geometric structure of an indoor scene as a collection of corners, boundaries and planes. On the one hand, once a depth map is estimated, this geometric structure can be inferred from the estimated depth map; thus, the geometric structure functions as a regularizer for depth estimation. On the other hand, this estimation also benefits from the geometric structure of a scene estimated from an image where the structure functions as a prior. However, furniture in indoor scenes makes it challenging to infer geometric structure from depth or image data. An attention map is inferred to facilitate both depth estimation from features of the geometric structure and also geometric inferences from the estimated depth map. To validate the effectiveness of each component in our framework under controlled conditions, we render a synthetic dataset, Shanghaitech-Kujiale Indoor 360 dataset with 3550 360 indoor images. Extensive experiments on popular datasets validate the effectiveness of our solution. We also demonstrate that our method can also be applied to counterfactual depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信