{"title":"PixelTrack:一种快速自适应非刚性物体跟踪算法","authors":"S. Duffner, Christophe Garcia","doi":"10.1109/ICCV.2013.308","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel algorithm for fast tracking of generic objects in videos. The algorithm uses two components: a detector that makes use of the generalised Hough transform with pixel-based descriptors, and a probabilistic segmentation method based on global models for foreground and background. These components are used for tracking in a combined way, and they adapt each other in a co-training manner. Through effective model adaptation and segmentation, the algorithm is able to track objects that undergo rigid and non-rigid deformations and considerable shape and appearance variations. The proposed tracking method has been thoroughly evaluated on challenging standard videos, and outperforms state-of-the-art tracking methods designed for the same task. Finally, the proposed models allow for an extremely efficient implementation, and thus tracking is very fast.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"272 1","pages":"2480-2487"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":"{\"title\":\"PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects\",\"authors\":\"S. Duffner, Christophe Garcia\",\"doi\":\"10.1109/ICCV.2013.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel algorithm for fast tracking of generic objects in videos. The algorithm uses two components: a detector that makes use of the generalised Hough transform with pixel-based descriptors, and a probabilistic segmentation method based on global models for foreground and background. These components are used for tracking in a combined way, and they adapt each other in a co-training manner. Through effective model adaptation and segmentation, the algorithm is able to track objects that undergo rigid and non-rigid deformations and considerable shape and appearance variations. The proposed tracking method has been thoroughly evaluated on challenging standard videos, and outperforms state-of-the-art tracking methods designed for the same task. Finally, the proposed models allow for an extremely efficient implementation, and thus tracking is very fast.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"272 1\",\"pages\":\"2480-2487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects
In this paper, we present a novel algorithm for fast tracking of generic objects in videos. The algorithm uses two components: a detector that makes use of the generalised Hough transform with pixel-based descriptors, and a probabilistic segmentation method based on global models for foreground and background. These components are used for tracking in a combined way, and they adapt each other in a co-training manner. Through effective model adaptation and segmentation, the algorithm is able to track objects that undergo rigid and non-rigid deformations and considerable shape and appearance variations. The proposed tracking method has been thoroughly evaluated on challenging standard videos, and outperforms state-of-the-art tracking methods designed for the same task. Finally, the proposed models allow for an extremely efficient implementation, and thus tracking is very fast.