电磁场和引力场的量子化和结构

B. Novakovic
{"title":"电磁场和引力场的量子化和结构","authors":"B. Novakovic","doi":"10.11648/J.AJMP.20211006.11","DOIUrl":null,"url":null,"abstract":"Following Relativistic Alpha Field Theory (RAFT) here it is started with the solution of the field parameters α and α′ in the combined electromagnetic and gravitational fields. The field parameters α and α′ are described as the functions of the particle charge, particle mass, electrical potential, gravitational potential, gravitational constant, gravitational mass and speed of the light in vacuum. The mentioned parameters are presented by using identity between the constant ratio of Planck mass and Planck length and between gravitational mass and gravitational length. It is shown that the minimal electrical length is limited by the electric charges or by the electrical particle mass. It is also confirmed that the energy conservation constant is valid both in an electromagnetic central symmetric field as well as in a gravitational field. Further, the numerical quantities of the minimal and maximal radial densities for the spherically symmetric particles are also valid in the central symmetric electromagnetic fields, as well as, in the gravitational fields. The quantization of the combination of the central symmetric electromagnetic and gravitational fields is dominant in the region of the minimal length and twice of that length. Therefore, the quantization is applied to the mentioned region, both in central symmetric electrical fields and in the combination of the central symmetric electrical and gravitational fields. It is determined that the minimal distance between two quantum states should be less than 10-35 m. The related minimal transition time can be obtained by using the transition speed equal to the speed of the light in vacuum. Calculation of the energy uncertainty, the shortest transition time, the generic state, the shortest physically possible time and the time effectively spent by the controlled system or control algorithm are presented systematically. The mentioned parameters are calculated both in the case of central symmetric electrical field, as well as, in the combination of the electrical and gravitational fields.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"39 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization and Structure of Electromagnetic and Gravitational Fields\",\"authors\":\"B. Novakovic\",\"doi\":\"10.11648/J.AJMP.20211006.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following Relativistic Alpha Field Theory (RAFT) here it is started with the solution of the field parameters α and α′ in the combined electromagnetic and gravitational fields. The field parameters α and α′ are described as the functions of the particle charge, particle mass, electrical potential, gravitational potential, gravitational constant, gravitational mass and speed of the light in vacuum. The mentioned parameters are presented by using identity between the constant ratio of Planck mass and Planck length and between gravitational mass and gravitational length. It is shown that the minimal electrical length is limited by the electric charges or by the electrical particle mass. It is also confirmed that the energy conservation constant is valid both in an electromagnetic central symmetric field as well as in a gravitational field. Further, the numerical quantities of the minimal and maximal radial densities for the spherically symmetric particles are also valid in the central symmetric electromagnetic fields, as well as, in the gravitational fields. The quantization of the combination of the central symmetric electromagnetic and gravitational fields is dominant in the region of the minimal length and twice of that length. Therefore, the quantization is applied to the mentioned region, both in central symmetric electrical fields and in the combination of the central symmetric electrical and gravitational fields. It is determined that the minimal distance between two quantum states should be less than 10-35 m. The related minimal transition time can be obtained by using the transition speed equal to the speed of the light in vacuum. Calculation of the energy uncertainty, the shortest transition time, the generic state, the shortest physically possible time and the time effectively spent by the controlled system or control algorithm are presented systematically. The mentioned parameters are calculated both in the case of central symmetric electrical field, as well as, in the combination of the electrical and gravitational fields.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"39 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJMP.20211006.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMP.20211006.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文遵循相对论α场理论(RAFT),从求解电磁场和引力场组合中的场参数α和α′开始。将场参数α和α′描述为粒子电荷、粒子质量、电势、引力势、引力常数、引力质量和真空中光速的函数。利用普朗克质量与普朗克长度的常数比和引力质量与引力长度的恒等式,给出了上述参数。结果表明,最小电长度受电荷或电粒子质量的限制。并证实了能量守恒常数在电磁中心对称场和引力场中都是有效的。此外,球对称粒子的最小和最大径向密度的数值量在中心对称电磁场和引力场中也是有效的。中心对称电磁场和引力场组合的量子化在最小长度和最小长度的两倍区域占主导地位。因此,无论是在中心对称电场中,还是在中心对称电场与引力场的组合中,都将量子化应用于上述区域。确定两个量子态之间的最小距离应小于10-35 m。利用与真空中光的速度相等的跃迁速度,可以得到相应的最小跃迁时间。系统地给出了能量不确定性、最短过渡时间、一般状态、最短物理可能时间和被控系统或控制算法有效花费时间的计算。上述参数既计算了中心对称电场的情况,也计算了电场和引力场的组合情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization and Structure of Electromagnetic and Gravitational Fields
Following Relativistic Alpha Field Theory (RAFT) here it is started with the solution of the field parameters α and α′ in the combined electromagnetic and gravitational fields. The field parameters α and α′ are described as the functions of the particle charge, particle mass, electrical potential, gravitational potential, gravitational constant, gravitational mass and speed of the light in vacuum. The mentioned parameters are presented by using identity between the constant ratio of Planck mass and Planck length and between gravitational mass and gravitational length. It is shown that the minimal electrical length is limited by the electric charges or by the electrical particle mass. It is also confirmed that the energy conservation constant is valid both in an electromagnetic central symmetric field as well as in a gravitational field. Further, the numerical quantities of the minimal and maximal radial densities for the spherically symmetric particles are also valid in the central symmetric electromagnetic fields, as well as, in the gravitational fields. The quantization of the combination of the central symmetric electromagnetic and gravitational fields is dominant in the region of the minimal length and twice of that length. Therefore, the quantization is applied to the mentioned region, both in central symmetric electrical fields and in the combination of the central symmetric electrical and gravitational fields. It is determined that the minimal distance between two quantum states should be less than 10-35 m. The related minimal transition time can be obtained by using the transition speed equal to the speed of the light in vacuum. Calculation of the energy uncertainty, the shortest transition time, the generic state, the shortest physically possible time and the time effectively spent by the controlled system or control algorithm are presented systematically. The mentioned parameters are calculated both in the case of central symmetric electrical field, as well as, in the combination of the electrical and gravitational fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信