Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R. Narasayya, M. Syamala
{"title":"列存储和B+树-混合物理设计重要吗?","authors":"Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R. Narasayya, M. Syamala","doi":"10.1145/3183713.3190660","DOIUrl":null,"url":null,"abstract":"Commercial DBMSs, such as Microsoft SQL Server, cater to diverse workloads including transaction processing, decision support, and operational analytics. They also support variety in physical design structures such as B+ tree and columnstore. The benefits of B+ tree for OLTP workloads and columnstore for decision support workloads are well-understood. However, the importance of hybrid physical designs, consisting of both columnstore and B+ tree indexes on the same database, is not well-studied --- a focus of this paper. We first quantify the trade-offs using carefully-crafted micro-benchmarks. This micro-benchmarking indicates that hybrid physical designs can result in orders of magnitude better performance depending on the workload. For complex real-world applications, choosing an appropriate combination of columnstore and B+ tree indexes for a database workload is challenging. We extend the Database Engine Tuning Advisor for Microsoft SQL Server to recommend a suitable combination of B+ tree and columnstore indexes for a given workload. Through extensive experiments using industry-standard benchmarks and several real-world customer workloads, we quantify how a physical design tool capable of recommending hybrid physical designs can result in orders of magnitude better execution costs compared to approaches that rely either on columnstore-only or B+ tree-only designs.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"204 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Columnstore and B+ tree - Are Hybrid Physical Designs Important?\",\"authors\":\"Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R. Narasayya, M. Syamala\",\"doi\":\"10.1145/3183713.3190660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial DBMSs, such as Microsoft SQL Server, cater to diverse workloads including transaction processing, decision support, and operational analytics. They also support variety in physical design structures such as B+ tree and columnstore. The benefits of B+ tree for OLTP workloads and columnstore for decision support workloads are well-understood. However, the importance of hybrid physical designs, consisting of both columnstore and B+ tree indexes on the same database, is not well-studied --- a focus of this paper. We first quantify the trade-offs using carefully-crafted micro-benchmarks. This micro-benchmarking indicates that hybrid physical designs can result in orders of magnitude better performance depending on the workload. For complex real-world applications, choosing an appropriate combination of columnstore and B+ tree indexes for a database workload is challenging. We extend the Database Engine Tuning Advisor for Microsoft SQL Server to recommend a suitable combination of B+ tree and columnstore indexes for a given workload. Through extensive experiments using industry-standard benchmarks and several real-world customer workloads, we quantify how a physical design tool capable of recommending hybrid physical designs can result in orders of magnitude better execution costs compared to approaches that rely either on columnstore-only or B+ tree-only designs.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"204 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3190660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3190660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Columnstore and B+ tree - Are Hybrid Physical Designs Important?
Commercial DBMSs, such as Microsoft SQL Server, cater to diverse workloads including transaction processing, decision support, and operational analytics. They also support variety in physical design structures such as B+ tree and columnstore. The benefits of B+ tree for OLTP workloads and columnstore for decision support workloads are well-understood. However, the importance of hybrid physical designs, consisting of both columnstore and B+ tree indexes on the same database, is not well-studied --- a focus of this paper. We first quantify the trade-offs using carefully-crafted micro-benchmarks. This micro-benchmarking indicates that hybrid physical designs can result in orders of magnitude better performance depending on the workload. For complex real-world applications, choosing an appropriate combination of columnstore and B+ tree indexes for a database workload is challenging. We extend the Database Engine Tuning Advisor for Microsoft SQL Server to recommend a suitable combination of B+ tree and columnstore indexes for a given workload. Through extensive experiments using industry-standard benchmarks and several real-world customer workloads, we quantify how a physical design tool capable of recommending hybrid physical designs can result in orders of magnitude better execution costs compared to approaches that rely either on columnstore-only or B+ tree-only designs.