通过函数的翻译进行平铺:结果和开放的问题

M. N. Kolountzakis, Nir Lev
{"title":"通过函数的翻译进行平铺:结果和开放的问题","authors":"M. N. Kolountzakis, Nir Lev","doi":"10.19086/da.28122","DOIUrl":null,"url":null,"abstract":"We say that a function $f \\in L^1(\\mathbb{R})$ tiles at level $w$ by a discrete translation set $\\Lambda \\subset \\mathbb{R}$, if we have $\\sum_{\\lambda \\in \\Lambda} f(x-\\lambda)=w$ a.e. In this paper we survey the main results, and prove several new ones, on the structure of tilings of $\\mathbb{R}$ by translates of a function. The phenomena discussed include tilings of bounded and of unbounded density, uniform distribution of the translates, periodic and non-periodic tilings, and tilings at level zero. Fourier analysis plays an important role in the proofs. Some open problems are also given.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Tiling by translates of a function: results and open problems\",\"authors\":\"M. N. Kolountzakis, Nir Lev\",\"doi\":\"10.19086/da.28122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a function $f \\\\in L^1(\\\\mathbb{R})$ tiles at level $w$ by a discrete translation set $\\\\Lambda \\\\subset \\\\mathbb{R}$, if we have $\\\\sum_{\\\\lambda \\\\in \\\\Lambda} f(x-\\\\lambda)=w$ a.e. In this paper we survey the main results, and prove several new ones, on the structure of tilings of $\\\\mathbb{R}$ by translates of a function. The phenomena discussed include tilings of bounded and of unbounded density, uniform distribution of the translates, periodic and non-periodic tilings, and tilings at level zero. Fourier analysis plays an important role in the proofs. Some open problems are also given.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/da.28122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.28122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

如果我们有$\sum_{\lambda \in \Lambda} f(x-\lambda)=w$ a.e,我们说一个函数$f \in L^1(\mathbb{R})$通过一个离散平移集$\Lambda \subset \mathbb{R}$在$w$层上进行平移。在本文中,我们回顾了主要的结果,并证明了几个新的结果,关于通过函数的平移来对$\mathbb{R}$层进行平移的结构。讨论的现象包括有界密度和无界密度的平铺、平铺的均匀分布、周期平铺和非周期平铺以及零能级平铺。傅里叶分析在证明中起着重要的作用。给出了一些开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tiling by translates of a function: results and open problems
We say that a function $f \in L^1(\mathbb{R})$ tiles at level $w$ by a discrete translation set $\Lambda \subset \mathbb{R}$, if we have $\sum_{\lambda \in \Lambda} f(x-\lambda)=w$ a.e. In this paper we survey the main results, and prove several new ones, on the structure of tilings of $\mathbb{R}$ by translates of a function. The phenomena discussed include tilings of bounded and of unbounded density, uniform distribution of the translates, periodic and non-periodic tilings, and tilings at level zero. Fourier analysis plays an important role in the proofs. Some open problems are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信