{"title":"马勒猜想ξ(3/2)nmod 1","authors":"O. Strauch","doi":"10.2478/udt-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract K. Mahler’s conjecture: There exists no ξ ∈ ℝ+ such that the fractional parts {ξ(3/2)n} satisfy 0 ≤ {ξ(3/2)n} < 1/2 for all n = 0, 1, 2,... Such a ξ, if exists, is called a Mahler’s Z-number. In this paper we prove that if ξ is a Z-number, then the sequence xn = {ξ(3/2)n}, n =1, 2,... has asymptotic distribution function c0(x), where c0(x)=1 for x ∈ (0, 1].","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"410 1","pages":"49 - 70"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mahler’s Conjecture on ξ(3/2)nmod 1\",\"authors\":\"O. Strauch\",\"doi\":\"10.2478/udt-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract K. Mahler’s conjecture: There exists no ξ ∈ ℝ+ such that the fractional parts {ξ(3/2)n} satisfy 0 ≤ {ξ(3/2)n} < 1/2 for all n = 0, 1, 2,... Such a ξ, if exists, is called a Mahler’s Z-number. In this paper we prove that if ξ is a Z-number, then the sequence xn = {ξ(3/2)n}, n =1, 2,... has asymptotic distribution function c0(x), where c0(x)=1 for x ∈ (0, 1].\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"410 1\",\"pages\":\"49 - 70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2021-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
K. Mahler猜想:对于所有n = 0,1,2,…,不存在ξ∈v +使得分数部分{ξ(3/2)n}满足0≤{ξ(3/2)n} < 1/2这样的ξ,如果存在,就叫做马勒z数。本文证明了如果ξ是z数,则序列xn = {ξ(3/2)n}, n = 1,2,…有渐近分布函数c0(x),其中对于x∈(0,1),c0(x)=1。
Abstract K. Mahler’s conjecture: There exists no ξ ∈ ℝ+ such that the fractional parts {ξ(3/2)n} satisfy 0 ≤ {ξ(3/2)n} < 1/2 for all n = 0, 1, 2,... Such a ξ, if exists, is called a Mahler’s Z-number. In this paper we prove that if ξ is a Z-number, then the sequence xn = {ξ(3/2)n}, n =1, 2,... has asymptotic distribution function c0(x), where c0(x)=1 for x ∈ (0, 1].