分数阶无刷直流电机混沌系统的同步

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Shiyun Shen, P. Zhou
{"title":"分数阶无刷直流电机混沌系统的同步","authors":"Shiyun Shen, P. Zhou","doi":"10.1155/2016/1236210","DOIUrl":null,"url":null,"abstract":"Based on the extension of Lyapunov direct method for nonlinear fractional-order systems, chaos synchronization for the fractional-order Brushless DC motors (BLDCM) is discussed. A chaos synchronization scheme is suggested. By means of Lyapunov candidate function, the theoretical proof of chaos synchronization is addressed. The numerical results show that the chaos synchronization scheme is valid.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synchronization of the Fractional-Order Brushless DC Motors Chaotic System\",\"authors\":\"Shiyun Shen, P. Zhou\",\"doi\":\"10.1155/2016/1236210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the extension of Lyapunov direct method for nonlinear fractional-order systems, chaos synchronization for the fractional-order Brushless DC motors (BLDCM) is discussed. A chaos synchronization scheme is suggested. By means of Lyapunov candidate function, the theoretical proof of chaos synchronization is addressed. The numerical results show that the chaos synchronization scheme is valid.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1236210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1236210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

基于对非线性分数阶系统Lyapunov直接方法的推广,讨论了分数阶无刷直流电动机的混沌同步问题。提出了一种混沌同步方案。利用Lyapunov候选函数对混沌同步进行了理论证明。仿真结果表明,混沌同步方案是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of the Fractional-Order Brushless DC Motors Chaotic System
Based on the extension of Lyapunov direct method for nonlinear fractional-order systems, chaos synchronization for the fractional-order Brushless DC motors (BLDCM) is discussed. A chaos synchronization scheme is suggested. By means of Lyapunov candidate function, the theoretical proof of chaos synchronization is addressed. The numerical results show that the chaos synchronization scheme is valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信