多部图的共谱性

A. Abdollahi, N. Zakeri
{"title":"多部图的共谱性","authors":"A. Abdollahi, N. Zakeri","doi":"10.26493/1855-3974.2332.749","DOIUrl":null,"url":null,"abstract":"Let G be a graph on n vertices and consider the adjacency spectrum of G as the ordered n -tuple whose entries are eigenvalues of G written decreasingly. Let G and H be two non-isomorphic graphs on n vertices with spectra S and T , respectively. Define the distance between the spectra of G and H as the distance of S and T to a norm N of the n -dimensional vector space over real numbers. Define the cospectrality of G as the minimum of distances between the spectrum of G and spectra of all other non-isomorphic n vertices graphs to the norm N . In this paper we investigate copsectralities of the cocktail party graph and the complete tripartite graph with parts of the same size to the Euclidean or Manhattan norms.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"98-100 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cospectrality of multipartite graphs\",\"authors\":\"A. Abdollahi, N. Zakeri\",\"doi\":\"10.26493/1855-3974.2332.749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph on n vertices and consider the adjacency spectrum of G as the ordered n -tuple whose entries are eigenvalues of G written decreasingly. Let G and H be two non-isomorphic graphs on n vertices with spectra S and T , respectively. Define the distance between the spectra of G and H as the distance of S and T to a norm N of the n -dimensional vector space over real numbers. Define the cospectrality of G as the minimum of distances between the spectrum of G and spectra of all other non-isomorphic n vertices graphs to the norm N . In this paper we investigate copsectralities of the cocktail party graph and the complete tripartite graph with parts of the same size to the Euclidean or Manhattan norms.\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"98-100 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2332.749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2332.749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设G是一个有n个顶点的图,并考虑G的邻接谱为有序的n元组,其项为G的特征值的递减形式。设G和H是n个顶点上的两个非同构图,分别具有谱S和谱T。定义G和H的光谱之间的距离为S和T到实数上N维向量空间范数N的距离。定义G的共谱为G的谱与所有其他非同构n顶点图的谱到范数n的距离的最小值。在本文中,我们研究了鸡尾酒会图和具有相同大小的欧几里得范数或曼哈顿范数的完全三方图的共共性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cospectrality of multipartite graphs
Let G be a graph on n vertices and consider the adjacency spectrum of G as the ordered n -tuple whose entries are eigenvalues of G written decreasingly. Let G and H be two non-isomorphic graphs on n vertices with spectra S and T , respectively. Define the distance between the spectra of G and H as the distance of S and T to a norm N of the n -dimensional vector space over real numbers. Define the cospectrality of G as the minimum of distances between the spectrum of G and spectra of all other non-isomorphic n vertices graphs to the norm N . In this paper we investigate copsectralities of the cocktail party graph and the complete tripartite graph with parts of the same size to the Euclidean or Manhattan norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信