使用NoSQL数据库的可扩展安全分析框架

Rizwan Ur Rahman, D. Tomar
{"title":"使用NoSQL数据库的可扩展安全分析框架","authors":"Rizwan Ur Rahman, D. Tomar","doi":"10.14257/IJDTA.2017.10.11.03","DOIUrl":null,"url":null,"abstract":"Enterprises generate an estimated ten to hundred billion events every day. Large enterprises collect over 500GB logs per day. Traditional systems are not capable to handle this massive amount of data and this becoming classic problem of Big Data. Security Analytics deals with these issues by utilizing the techniques from Big Data analytics to dig out valuable information for averting cyber attacks. In this paper the scalable framework for security analytics is proposed using MongoDB NoSQL database. An attack scenario is created to simulate the zero-day malware. Supervised and unsupervised learning techniques are applied for analytics on data collected from live application and experimental set-up. The outcome is 360 view of data by singling out an abnormal access behavior for given user. It is observed that False Positive rate has been reduced.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"44 1","pages":"27-46"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scalable Security Analytics Framework Using NoSQL Database\",\"authors\":\"Rizwan Ur Rahman, D. Tomar\",\"doi\":\"10.14257/IJDTA.2017.10.11.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enterprises generate an estimated ten to hundred billion events every day. Large enterprises collect over 500GB logs per day. Traditional systems are not capable to handle this massive amount of data and this becoming classic problem of Big Data. Security Analytics deals with these issues by utilizing the techniques from Big Data analytics to dig out valuable information for averting cyber attacks. In this paper the scalable framework for security analytics is proposed using MongoDB NoSQL database. An attack scenario is created to simulate the zero-day malware. Supervised and unsupervised learning techniques are applied for analytics on data collected from live application and experimental set-up. The outcome is 360 view of data by singling out an abnormal access behavior for given user. It is observed that False Positive rate has been reduced.\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"44 1\",\"pages\":\"27-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJDTA.2017.10.11.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2017.10.11.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

据估计,企业每天会产生100到1000亿个事件。大型企业每天收集的日志超过500GB。传统系统无法处理如此大量的数据,这成为大数据的经典问题。安全分析通过利用大数据分析技术来挖掘有价值的信息以避免网络攻击,从而处理这些问题。本文提出了一个基于MongoDB NoSQL数据库的可扩展安全分析框架。创建一个攻击场景来模拟零日恶意软件。有监督和无监督学习技术应用于分析从现场应用和实验设置中收集的数据。结果是通过为给定用户挑选出异常访问行为来获得360度的数据视图。观察到误报率有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Security Analytics Framework Using NoSQL Database
Enterprises generate an estimated ten to hundred billion events every day. Large enterprises collect over 500GB logs per day. Traditional systems are not capable to handle this massive amount of data and this becoming classic problem of Big Data. Security Analytics deals with these issues by utilizing the techniques from Big Data analytics to dig out valuable information for averting cyber attacks. In this paper the scalable framework for security analytics is proposed using MongoDB NoSQL database. An attack scenario is created to simulate the zero-day malware. Supervised and unsupervised learning techniques are applied for analytics on data collected from live application and experimental set-up. The outcome is 360 view of data by singling out an abnormal access behavior for given user. It is observed that False Positive rate has been reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信