几何量化和测量的Gromov-Hausdorff收敛

Pub Date : 2019-09-15 DOI:10.4310/JSG.2020.V18.N6.A3
Kota Hattori
{"title":"几何量化和测量的Gromov-Hausdorff收敛","authors":"Kota Hattori","doi":"10.4310/JSG.2020.V18.N6.A3","DOIUrl":null,"url":null,"abstract":"On a compact symplectic manifold $(X,\\omega)$ with a prequantum line bundle $(L,\\nabla,h)$, we consider the one-parameter family of $\\omega$-compatible complex structures which converges to the real polarization coming from the Lagrangian torus fibration. There are several researches which show that the holomorphic sections of the line bundle localize at Bohr-Sommerfeld fibers. In this article we consider the one-parameter family of the Riemannian metrics on the frame bundle of $L$ determined by the complex structures and $\\nabla,h$, and we can see that their diameters diverge. If we fix a base point in some fibers of the Lagrangian fibration we can show that they measured Gromov-Hausdorff converge to some pointed metric measure spaces with the isometric $S^1$-actions, which may depend on the choice of the base point. We observe that the properties of the $S^1$-actions on the limit spaces actually depend on whether the base point is in the Bohr-Sommerfeld fibers or not.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The geometric quantizations and the measured Gromov–Hausdorff convergences\",\"authors\":\"Kota Hattori\",\"doi\":\"10.4310/JSG.2020.V18.N6.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a compact symplectic manifold $(X,\\\\omega)$ with a prequantum line bundle $(L,\\\\nabla,h)$, we consider the one-parameter family of $\\\\omega$-compatible complex structures which converges to the real polarization coming from the Lagrangian torus fibration. There are several researches which show that the holomorphic sections of the line bundle localize at Bohr-Sommerfeld fibers. In this article we consider the one-parameter family of the Riemannian metrics on the frame bundle of $L$ determined by the complex structures and $\\\\nabla,h$, and we can see that their diameters diverge. If we fix a base point in some fibers of the Lagrangian fibration we can show that they measured Gromov-Hausdorff converge to some pointed metric measure spaces with the isometric $S^1$-actions, which may depend on the choice of the base point. We observe that the properties of the $S^1$-actions on the limit spaces actually depend on whether the base point is in the Bohr-Sommerfeld fibers or not.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N6.A3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N6.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在具有前量子线束$(L,\nabla,h)$的紧致辛流形$(X,\omega)$上,我们考虑了收敛于来自拉格朗日环面振动的实偏振的$\omega$相容单参数复结构族。已有一些研究表明,线束的全纯部分在玻尔-索默菲尔德光纤中存在。本文考虑由复杂结构和$\nabla,h$决定的$L$框架束上的单参数黎曼度量族,我们可以看到它们的直径是发散的。如果我们在拉格朗日纤维的某些纤维中固定一个基点,我们可以证明它们测量到的Gromov-Hausdorff收敛到一些具有等距$S^1$ -作用的点度量度量空间,这可能取决于基点的选择。我们观察到极限空间上$S^1$ -作用的性质实际上取决于基点是否在玻尔-索默菲尔德纤维中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The geometric quantizations and the measured Gromov–Hausdorff convergences
On a compact symplectic manifold $(X,\omega)$ with a prequantum line bundle $(L,\nabla,h)$, we consider the one-parameter family of $\omega$-compatible complex structures which converges to the real polarization coming from the Lagrangian torus fibration. There are several researches which show that the holomorphic sections of the line bundle localize at Bohr-Sommerfeld fibers. In this article we consider the one-parameter family of the Riemannian metrics on the frame bundle of $L$ determined by the complex structures and $\nabla,h$, and we can see that their diameters diverge. If we fix a base point in some fibers of the Lagrangian fibration we can show that they measured Gromov-Hausdorff converge to some pointed metric measure spaces with the isometric $S^1$-actions, which may depend on the choice of the base point. We observe that the properties of the $S^1$-actions on the limit spaces actually depend on whether the base point is in the Bohr-Sommerfeld fibers or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信