元数据流:高效的探索性数据流作业

R. Fernandez, W. Culhane, Pijika Watcharapichat, M. Weidlich, V. Morales, P. Pietzuch
{"title":"元数据流:高效的探索性数据流作业","authors":"R. Fernandez, W. Culhane, Pijika Watcharapichat, M. Weidlich, V. Morales, P. Pietzuch","doi":"10.1145/3183713.3183760","DOIUrl":null,"url":null,"abstract":"Distributed dataflow systems such as Apache Spark and Apache Flink are used to derive new insights from large datasets. While they efficiently execute concrete data processing workflows, expressed as dataflow graphs, they lack generic support for exploratory workflows : if a user is uncertain about the correct processing pipeline, e.g. in terms of data cleaning strategy or choice of model parameters, they must repeatedly submit modified jobs to the system. This, however, misses out on optimisation opportunities for exploratory workflows, both in terms of scheduling and memory allocation. We describe meta-dataflows(MDFs), a new model to effectively express exploratory workflows and efficiently execute them on compute clusters. With MDFs, users specify a family of dataflows using two primitives: (a) an explore operator automatically considers choices in a dataflow; and (b) a choose operator assesses the result quality of explored dataflow branches and selects a subset of the results. We propose optimisations to execute MDFs: a system can (i) avoid redundant computation when exploring branches by reusing intermediate results, discarded results from underperforming branches, and pruning unnecessary branches; and (ii) consider future data access patterns in the MDF when allocating cluster memory. Our evaluation shows that MDFs improve the runtime of exploratory workflows by up to 90% compared to sequential job execution.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Meta-Dataflows: Efficient Exploratory Dataflow Jobs\",\"authors\":\"R. Fernandez, W. Culhane, Pijika Watcharapichat, M. Weidlich, V. Morales, P. Pietzuch\",\"doi\":\"10.1145/3183713.3183760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed dataflow systems such as Apache Spark and Apache Flink are used to derive new insights from large datasets. While they efficiently execute concrete data processing workflows, expressed as dataflow graphs, they lack generic support for exploratory workflows : if a user is uncertain about the correct processing pipeline, e.g. in terms of data cleaning strategy or choice of model parameters, they must repeatedly submit modified jobs to the system. This, however, misses out on optimisation opportunities for exploratory workflows, both in terms of scheduling and memory allocation. We describe meta-dataflows(MDFs), a new model to effectively express exploratory workflows and efficiently execute them on compute clusters. With MDFs, users specify a family of dataflows using two primitives: (a) an explore operator automatically considers choices in a dataflow; and (b) a choose operator assesses the result quality of explored dataflow branches and selects a subset of the results. We propose optimisations to execute MDFs: a system can (i) avoid redundant computation when exploring branches by reusing intermediate results, discarded results from underperforming branches, and pruning unnecessary branches; and (ii) consider future data access patterns in the MDF when allocating cluster memory. Our evaluation shows that MDFs improve the runtime of exploratory workflows by up to 90% compared to sequential job execution.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3183760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

分布式数据流系统(如Apache Spark和Apache Flink)用于从大型数据集中获得新的见解。虽然它们可以有效地执行具体的数据处理工作流,用数据流图表示,但它们缺乏对探索性工作流的通用支持:如果用户不确定正确的处理管道,例如在数据清理策略或模型参数的选择方面,他们必须反复向系统提交修改后的作业。然而,在调度和内存分配方面,这错过了探索性工作流的优化机会。我们描述了元数据流(MDFs),这是一种有效表达探索性工作流并在计算集群上高效执行的新模型。使用mdf,用户使用两个原语指定一系列数据流:(a)探索操作符自动考虑数据流中的选择;(b)选择算子评估所探索数据流分支的结果质量并选择结果的子集。我们建议优化执行mdf:系统可以(i)通过重用中间结果来避免在探索分支时的冗余计算,从表现不佳的分支中丢弃结果,并修剪不必要的分支;(ii)在分配集群内存时考虑MDF中未来的数据访问模式。我们的评估表明,与顺序作业执行相比,mdf可将探索性工作流的运行时间提高90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Dataflows: Efficient Exploratory Dataflow Jobs
Distributed dataflow systems such as Apache Spark and Apache Flink are used to derive new insights from large datasets. While they efficiently execute concrete data processing workflows, expressed as dataflow graphs, they lack generic support for exploratory workflows : if a user is uncertain about the correct processing pipeline, e.g. in terms of data cleaning strategy or choice of model parameters, they must repeatedly submit modified jobs to the system. This, however, misses out on optimisation opportunities for exploratory workflows, both in terms of scheduling and memory allocation. We describe meta-dataflows(MDFs), a new model to effectively express exploratory workflows and efficiently execute them on compute clusters. With MDFs, users specify a family of dataflows using two primitives: (a) an explore operator automatically considers choices in a dataflow; and (b) a choose operator assesses the result quality of explored dataflow branches and selects a subset of the results. We propose optimisations to execute MDFs: a system can (i) avoid redundant computation when exploring branches by reusing intermediate results, discarded results from underperforming branches, and pruning unnecessary branches; and (ii) consider future data access patterns in the MDF when allocating cluster memory. Our evaluation shows that MDFs improve the runtime of exploratory workflows by up to 90% compared to sequential job execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信